
this print for content only—size & color not accurate spine = 0.835" 440 page count

Books for professionals by professionals®

Beginning Groovy and Grails:
From Novice to Professional
Dear Reader,

Grails is a convention-based web framework and development environment
that uses the Groovy language and includes everything necessary to develop
sophisticated Web 2.0 applications. It leverages some of the most solid Java™
frameworks available, including Hibernate and Spring.

We wrote this book because even with our extensive years of Java devel-
opment, we became frustrated with how much work was involved in getting
even the simplest Web 2.0 application up and running. Starting a new project
involves downloading countless frameworks, configuring and integrating dif-
ferent libraries, and installing infrastructure software such as application serv-
ers and databases. All of that before you even get a chance to write a line of
code. After years of searching, we found the solution to becoming productive:
Groovy and Grails.

We take a practical approach to teaching you how to develop productive
Grails web applications. We cover all the basics and some advanced topics of
the Groovy language that are necessary for Grails application development. We
walk you through the process of writing a fully featured web application, giving
you the insight and skills you need to create your own applications. We cover the
basic Grails features of scaffolding, domains, controllers, services, and Groovy
Server Pages. We also cover common web application challenges such as secu-
rity, Ajax, web services, reporting, batch processing, and deployment. With this
knowledge, you’ll be well equipped to write efficient and productive code using
Grails. Finally, we even include a Swing desktop client built in Groovy that inte-
grates with the application using the exposed web services.

Christopher M. Judd, Joseph Faisal Nusairat, James Shingler

US $42.99

Shelve in
Java Programming

User level:
Beginner–Intermediate

Judd, Nusairat,
Shingler

The EXPERT’s VOIce® in Open Source

Beginning

Groovy
and Grails
From Novice to Professional

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Christopher M. Judd,
Joseph Faisal Nusairat,
and James Shingler
Foreword by Graeme Rocher, Grails Project Lead

Companion
eBook Available

THE APRESS ROADMAP

The Definitive Guide
to Grails

Beginning
Groovy and Grails

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

A practical tutorial to agile web development
for the Java platform using Groovy and Grails.

ISBN 978-1-4302-1045-0

9 781430 210450

54299

Joseph Faisal Nusairat,
author of

Beginning JBoss® Seam

Christopher M. Judd,
author of

Enterprise Java™
Development on a Budget

Pro Eclipse JST

James Shingler

Beginning Groovy
 and Grails

Christopher M. Judd,
Joseph Faisal Nusairat, and
James Shingler

Beginning Groovy
and Grails
From Novice to Professional

10450_ch00FM.qxd 5/28/08 2:06 PM Page i

Beginning Groovy and Grails: From Novice to Professional

Copyright © 2008 by Christopher M. Judd, Joseph Faisal Nusairat, James Shingler

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1045-0

ISBN-13 (electronic): 978-1-4302-1046-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Matthew Moodie
Technical Reviewer: Guilliaume Laforge
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan

Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Kylie Johnston
Copy Editors: Nicole Abramowitz, Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Kinetic Publishing Services, LLC
Proofreader: Liz Welch
Indexer: Julie Grady
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

10450_ch00FM.qxd 5/28/08 2:06 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To my supportive wife and best friend, Sue. To my son, Blake, who always makes me laugh.
To all the individuals and organizations who have contributed to making Groovy and

Grails amazing. And to my Heavenly Father, for all the blessings
He has bestowed upon my family and me.

—Chris

To my family, for their love and support. And to my brother, Specialist Adam Nusairat,
who is currently deployed to Afghanistan: stay safe; we miss you.

—Joseph

To my wonderful wife, Wendy, and my son, Tyler. None of this would have been possible
without your love, support, and understanding. I love you!

—Jim

10450_ch00FM.qxd 5/28/08 2:06 PM Page iii

10450_ch00FM.qxd 5/28/08 2:06 PM Page iv

Contents at a Glance

Foreword . xv

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introduction to Groovy . 1

■CHAPTER 2 Groovy Basics . 11

■CHAPTER 3 More Advanced Groovy . 47

■CHAPTER 4 Introduction to Grails . 63

■CHAPTER 5 Building the User Interface . 105

■CHAPTER 6 Building Domains and Services . 165

■CHAPTER 7 Security in Grails . 215

■CHAPTER 8 Web 2.0—Ajax and Friends . 257

■CHAPTER 9 Web Services . 295

■CHAPTER 10 Reporting . 311

■CHAPTER 11 Batch Processing . 337

■CHAPTER 12 Deploying and Upgrading . 353

■CHAPTER 13 Alternative Clients . 367

■INDEX . 399

v

10450_ch00FM.qxd 5/28/08 2:06 PM Page v

10450_ch00FM.qxd 5/28/08 2:06 PM Page vi

Contents

Foreword . xv

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introduction to Groovy . 1

Groovy Language Features . 2

Groovy Installation. 2

Groovy by Example . 3

Converting Java to Groovy . 5

Converting a JavaBean to a GroovyBean. 5

Simplifying the Code . 6

Using Groovy Collection Notation and Closure 8

Getting Rid of Main() . 8

Summary . 9

■CHAPTER 2 Groovy Basics . 11

Scripts . 11

Using Script Functions . 12

Compiling Groovy. 13

Running Groovy . 14

Assertions . 17

Strings . 18

String Interpolation . 20

Multiline Strings . 21

Slashy Strings. 22

Methods and Closures . 23

Methods. 23

Closures. 24
vii

10450_ch00FM.qxd 5/28/08 2:06 PM Page vii

Collections . 27

Lists . 27

Ranges. 28

Sets . 30

Arrays. 31

Maps . 32

Regular Expressions . 33

Groovy Regular Expression Operators . 36

Common Uses of Regular Expressions. 38

Operators . 40

Operator Overloading . 40

Specialized Operators . 41

Summary . 45

■CHAPTER 3 More Advanced Groovy . 47

Groovy Unit Testing . 47

Working with XML . 50

Writing XML with Java . 50

Groovy Builders . 52

Writing XML with Groovy MarkupBuilder . 53

Reading XML with XmlSlurper . 54

Generating Text with Templates . 54

Expandos. 57

Meta Object Protocol. 58

Domain-Specific Languages . 60

Summary . 61

■CHAPTER 4 Introduction to Grails . 63

What Is Grails? . 64

Grails Features . 64

Integrated Open Source . 66

Grails Architecture . 68

Installing Grails . 70

Collab-Todo Application . 70

Getting Started with Scaffolding . 71

■CONTENTSviii

10450_ch00FM.qxd 5/28/08 2:06 PM Page viii

Understanding the Scaffolding Process. 74

Creating the Application . 75

Running the Application . 79

Creating a Domain Class . 81

Implementing Integration Tests . 82

Running the Test Harness. 84

Implementing a Domain Class. 87

Creating the Controller . 89

Finishing the Remaining Domain and Controllers 96

Creating Domain Relationships . 98

Summary . 103

■CHAPTER 5 Building the User Interface . 105

Starting with the End in Mind . 105

Creating the Footer . 107

Creating the Topbar . 110

Adding More Look and Feel . 112

Grails Tags. 118

Making the Topbar Functional . 122

The Login View . 122

The login Action . 124

Handling the Login and Logout Actions . 125

Testing . 126

Integration Testing Using JUnit . 127

Functional Testing Using Canoo WebTest. 131

Externalizing Strings . 139

Errors and Validation . 141

Flash and Flash Messages. 144

Controlling the Application . 148

Controlling Users . 148

Controlling Categories. 153

Creating an Audit Log Using Action Interceptors . 157

Using Filters . 159

Summary . 163

■CONTENTS ix

10450_ch00FM.qxd 5/28/08 2:06 PM Page ix

■CONTENTSx

■CHAPTER 6 Building Domains and Services . 165

GORM . 165

Collab-Todo’s Domain. 166

Creating Domain Objects . 168

Basic Domain Creation . 169

Creating Relationships . 172

Overwriting Default Settings . 177

Validation . 186

Constraints . 186

Calling the Validator. 190

Validation Messages . 190

Querying the Database . 194

GORM’s CRUD Support . 194

Creating Queries . 196

Database Migration. 206

The dbmigrate Plug-In . 206

The LiquiBase Plug-In . 207

Services . 208

Creating a Service . 208

Calling the Service. 209

Injecting into the Service . 210

Initializing the Service . 210

Setting a Bean to Be Transactional . 211

Service Context Available in the Service . 211

Summary . 212

■CHAPTER 7 Security in Grails . 215

What Is Security?. 216

Authentication . 216

Access Control . 218

An Overview of Grails Security Solutions . 221

Custom Security Implementation . 222

Registering a User . 224

Logging In and Out . 229

Securing the Controllers . 231

10450_ch00FM.qxd 5/28/08 2:06 PM Page x

JSecurity . 233

JSecurity Installation . 234

JSecurity Domain Classes . 234

JSecurity Domain Data . 237

JSecurity Usage . 239

CAS . 243

CAS Installation . 244

CAS Configuration . 244

CAS Usage . 246

Spring Security (aka Acegi Security) . 246

Acegi Installation . 247

Acegi Domain Classes. 248

Acegi Domain Data . 250

Acegi Domain Customization . 251

Acegi Security Usage . 253

Summary . 255

■CHAPTER 8 Web 2.0—Ajax and Friends . 257

Advanced Presentation Components . 257

Adding Rich-Text Capabilities . 258

Adding Search Capabilities . 261

Allowing File Uploads . 264

Adding Mail Services. 269

Tag Libraries. 274

Creating the Tag Library . 274

Referencing the Tag Library . 276

Ajax in Grails. 277

Using Ajax Frameworks in Grails. 277

Dynamic Rendering of Data . 279

Editing a Field in Place . 283

Using the Autocomplete Feature . 287

RSS Feeds. 291

Summary . 293

■CONTENTS xi

10450_ch00FM.qxd 5/28/08 2:06 PM Page xi

■CHAPTER 9 Web Services . 295

RESTful Web Services. 296

RESTful in Grails . 298

URL Mapping . 299

RestController . 301

Summary . 309

■CHAPTER 10 Reporting . 311

The Report . 311

Overview of the Reporting Function . 312

Reporting Tools . 314

Overview . 314

Installing JasperReports and iReports . 315

Creating the To-Do Report . 316

Defining the Data Source . 317

Using iReports . 318

Enhancing the Report . 321

Compiling the Report. 323

The Report Tag. 323

Tag Library Overview . 323

Creating the Tag . 324

The ReportController and the ReportService . 326

Tying It All Together . 332

Gathering the Report Data . 333

Adding the Report Tag to the Application. 333

The Report List. 334

An Alternate Approach . 335

Summary . 335

■CHAPTER 11 Batch Processing . 337

Installing the Quartz Plug-in . 337

Creating a Job . 338

Building a Batch-Reporting Facility . 340

Creating a Nightly Reporting Job . 342

Retrieving the User’s To-Dos . 346

■CONTENTSxii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xii

Invoking the Report Service . 347

Invoking the E-Mail Service . 349

Summary . 351

■CHAPTER 12 Deploying and Upgrading. 353

Deploying Grails Applications . 353

Using Environments. 353

Understanding Grails Configurations . 354

Packaging the Application for Deployment . 360

Deploying to an Application Server. 361

Automating Tasks with Gant . 363

Upgrading Grails Applications . 365

Summary . 366

■CHAPTER 13 Alternative Clients . 367

Overview . 367

Setup . 368

Command-Line Scripts. 369

Command-Line Overview. 369

Reading To-Do Items . 369

Creating To-Do Items. 372

Deleting To-Do Items. 375

Updating To-Do Items . 376

Command-Line Script Summary. 378

Rich Groovy Client . 379

Overview . 379

Options, Alternatives, and Considerations . 380

Builder Overview . 383

Creating the Main Module . 386

Creating the Controller Module . 387

Creating the View. 392

HTTP Utilities (Get, Put, Post, and Delete) . 396

Summary . 398

■INDEX . 399

■CONTENTS xiii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xiii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xiv

Foreword

The year 2005 was a traumatic year for the Java web application development commu-
nity. It was under fire for the unnecessary “fat” architecture of Java Platform, Enterprise
Edition (Java EE) systems compared to the new kids on the block like Ruby on Rails and
Django. The search began for Java’s answer to these frameworks. I had an existing product
that was heavily invested in Java frameworks such as Spring and Hibernate, but because
I had been involved with the Groovy team for a while, I knew we could create the solution
that people were looking for. Hence, Grails was born.

I knew Groovy itself was a phenomenal piece of technology that combined the best
of the dynamic language worlds and Java. Innovation has been rife within the Groovy
community since the early days with its builder concept. It had inspired other languages,
and more recent languages such as ActionScript 3 and ECMAScript 4 had adopted its
support for mixed typing. Groovy had proven to me that you can mix a dynamically typed
language like Groovy with a statically typed language like Java in the same code base and
get the best of both worlds without incurring the cost of context switching.

In addition, I knew that the Java community has invested years in building the largest
amount of open source software in the world. Thousands of libraries exist for Java, built by
years of best practice. Reinventing the wheel seemed like a crazy idea. Building Grails on
top of existing technologies like Spring and Hibernate has proven to be one of the best
decisions we have made. For me, Grails is the natural next step for Java EE developers. If
Spring and Hibernate provided an abstraction over Java EE and simplified development,
then Grails is an abstraction over Spring, Hibernate, and Java EE that can take you, the
developer, to the next level.

Through the use of domain-specific languages and higher-level abstractions, Grails
dramatically simplifies web development on the Java platform. By bundling a container
and a database, we eliminated all barriers, and by supporting hot reloading during devel-
opment, agile development became a reality. However, even with all this simplicity, as
Grails has matured it has become much more than a web framework. It has become a web
platform that participates in your entire project life cycle. Grasping all the concepts and
conventions and applying them to your projects can be a challenge.

Fortunately, books like Beginning Groovy and Grails can help you get a grasp on the
technology and guide you through the steps to make your application a reality. Chris,
Joseph, and Jim do an excellent job of guiding you through the basics and then plunging
headfirst into advanced topics like security, Asynchronous JavaScript and XML (Ajax), and
deployment.

xv

10450_ch00FM.qxd 5/28/08 2:06 PM Page xv

Books like this one take a while to write, and Grails itself was nearly three years in
the making. However, what staggers me most is not the progress of Grails, but rather the
progress of the community. The Groovy and Grails communities are some of the most
vibrant around. The Grails mailing lists receive around 150 posts a day from enthusiastic
users either asking questions or responding to questions from others.

During the development of Grails, we made a conscious decision to implement
a plug-in system so that others could extend and embrace the Grails philosophy of
convention over configuration. The idea was based on the success seen by other open
source projects, like the Firefox browser, in allowing the user community to embrace
and extend the core platform. This has resulted in more than 60 user-contributed
plug-ins (http://plugins.grails.org/) that extend and enhance Grails’ core function-
ality. They represent more than three million lines of user-contributed code.

It gives me great pleasure that Beginning Groovy and Grails takes a look at not only
Grails, but also some of the excellent plug-ins made available by our users. So many
problems out there already have excellent solutions; why reinvent the wheel?

Graeme Rocher
Grails Project Lead and CTO of G2One Inc. (http://www.g2one.com)

■FOREWORDxvi

10450_ch00FM.qxd 5/28/08 2:06 PM Page xvi

http://plugins.grails.org
http://www.g2one.com

About the Authors

■CHRISTOPHER M. JUDD is the president and primary consultant for
Judd Solutions, LLC (http://www.juddsolutions.com), an interna-
tional speaker, an open source evangelist, the Central Ohio Java
Users Group (http://www.cojug.org) leader, and the coauthor of
Enterprise Java Development on a Budget (Apress, 2003) and Pro
Eclipse JST (Apress, 2005). He has spent 12 years architecting and
developing software for Fortune 500 companies in various indus-
tries, including insurance, retail, government, manufacturing,
service, and transportation. His current focus is on consulting,

mentoring, and training with Java, Java EE, Java Platform, Micro Edition (Java ME),
mobile technologies, and related technologies.

■JOSEPH FAISAL NUSAIRAT is a software developer who has been
working full time in the Columbus, Ohio, area since 1998, primarily
focused on Java development. His career has taken him into a vari-
ety of Fortune 500 industries, including military applications, data
centers, banking, internet security, pharmaceuticals, and insurance.
Throughout this experience, he has worked on all varieties of appli-
cation development, from design and architecture to development.
Joseph, like most Java developers, is particularly fond of open source
projects and tries to use as much open source software as possible

when working with clients.
Joseph is a graduate of Ohio University with dual degrees in computer science and

microbiology and a minor in chemistry. While at Ohio University, Joseph also dabbled in
student politics and was a research assistant in the virology labs.

Currently, Joseph works as a senior partner at Integrallis Software (http://www.
integrallis.com). In his off-hours, he enjoys watching bodybuilding competitions and
Broadway musicals, specifically anything with Lauren Molina.

■JAMES SHINGLER is a senior consulting IT architect for a major
midwestern insurance and financial services company. The focus
of his career has been using cutting-edge technology to develop
IT solutions for the insurance, financial services, and manufactur-
ing industries. He has 11 years of large-scale Java experience and
significant experience in distributed and relational technologies.

xvii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xvii

http://www.juddsolutions.com
http://www.cojug.org
http://www.integrallis.com
http://www.integrallis.com

10450_ch00FM.qxd 5/28/08 2:06 PM Page xviii

About the Technical Reviewer

■GUILLAUME LAFORGE is the Groovy project manager and specification lead of Java
Specification Request (JSR) 241, which standardizes the Groovy dynamic language
in the Java Community Process (JCP). As the vice president of technology of G2One
(http://www.g2one.com/), the company dedicated to the development of Groovy and
Grails, he provides professional services for those technologies, including training,
support, and consulting.

Guillaume coauthored the best-selling book, Groovy in Action (Manning Publica-
tions, 2007), and he reviewed and wrote forewords for most of the Groovy and Grails
books on the market. You can meet him at conferences around the world, where he
evangelizes the Groovy dynamic language and the agile Grails web framework.

xix

10450_ch00FM.qxd 5/28/08 2:06 PM Page xix

http://www.g2one.com

10450_ch00FM.qxd 5/28/08 2:06 PM Page xx

Acknowledgments

This book is the culmination of the effort of a lot of people, without whom we would not
have been able to accomplish its publication. We would like to begin by thanking Jason
Gilmore for bringing this project to us and being our original managing editor. We really
need to express our appreciation to our project manager, Kylie Johnston, for ultimately
organizing the project to ensure we got the book done in a timely and organized manner.
Thanks to our editorial director and associate publisher, Dominic Shakeshaft, for remov-
ing barriers. Thanks to our copy editors, Nicole Abramowitz and Marilyn Smith, for making
our writing readable. Thanks to other Apress staff, including Steve Anglin, Laura Cheu,
Stephanie Parker, and, of course, Gary Cornell.

It is important that a technical book be accurate, so we would like to thank our formal
technical reviewers, Guillaume Laforge and Harshad Oak. We would also like to thank
those who read the book and provided feedback during various stages of the book; thanks
to Jeff Bailey, Matt Montgomery, and Stephen Thompson.

We would like to thank all those who have contributed to the Groovy and Grails
projects, especially Graeme Rocher, Guillaume Laforge, and G2One. We would also like
to thank other Groovy and Grails community contributors, including James Williams for
SwingXBuilder, Andres Almiray for JideBuilder and Graphics Builder, and Marcos Fábio
Pereira for the JasperGrails plug-in. They have created some great stuff and should be
proud of themselves. Thanks to Sven Haiges and Glen Smith for their informative Grails
podcast. Also, thanks to Dave Booth and JetBrains for providing us with licenses for
IntelliJ IDEA, the best Groovy and Grails IDE.

I would like to personally thank my wife, Sue, and son, Blake, for being understand-
ing and supportive through this long process. I would like to thank all those who have
contributed to my personal and professional development over the years: David Bailey,
Jim Shingler, Joseph Nusairat, Neal Ford, Brian Sam-Bodden, Steve Swing, Brian Camp-
bell, Mike Rozlog, Geoff Goetz, Bob Myers, Ken Faw, Chris Nicholas, Rick Burchfield,
Kevin Smith, Floyd Carver, Lee Hall, Seth Flory, David Lucas, BJ Allmon, Linc Kroeger,
Doug Mair, Akin Oladoye, Tom Pugh, Drew Robbins, Angelo Serra, Hakeem Shittu, and
Alex Terrazas. I’d also like to thank Jay Zimmerman, Andrew Glover, Dave Thomas,
Venkat Subramaniam, Scott Davis, Ted Neward, and the other great speakers and influ-
encers on the “No Fluff Just Stuff” tour.

Chris

xxi

10450_ch00FM.qxd 5/28/08 2:06 PM Page xxi

Writing a book has been one of the most daunting tasks of my adult life. It is hard to write
a book while still going to work and maintaining some semblance of a life. I thought writ-
ing with multiple authors would make it easier; however, it just gives more expectations to
live up to. I’d like to first thank my coauthors for writing with me, and most importantly,
for writing the chapters I didn’t want to write. In fairness, I believe the way we divided up
the chapters worked out well, because we were each able to focus on the areas we had the
most passion about.

I’d also like to thank my business partner, Brian Sam-Bodden, for pushing me week
after week and inspiring me to be a better developer.

I write these books in the hope that people will actually use the new technology we
write about. For people to do that, companies need strong leaders who are willing to try
something new. I’d like to thank those I have had the pleasure to work for who saw the
power that new technologies bring—people like Chris Nicholas, Alberto Avila, Javier Sol,
and Scott Carter, whose team I still keep running into at national conferences.

Finally, I’d like to thank my friends for their personal support and words of encourage-
ment. Thank you Marie Wong, Joe O’Brien, Rob Stevenson, and all my tweets on twitter.

Joseph

I would personally like to thank my wife, Wendy, and son, Tyler, for their support and
patience through the writing of the book and in our journey together through life. I would
like to thank the many people who have contributed to my personal and professional
growth: Wendy Shingler, James L. Shingler Sr., Linda Shingler, George Ramsayer, Tom
Posival, Chris Judd, Rick Burchfield, David Lucas, Chris Nicholas, Tim Resch, Kevin Smith,
Neal Ford, Seth Flory, Frank Neugebauer, David Duhl, Nate Beyene, Teresa Whitt, Jay
Johnson, Gerry Wright, and the many other people who have touched my life.

Jim

■ACKNOWLEDGMENTSxxii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xxii

Introduction

We live in interesting times. We are witnessing an amazing revolution. Over the last
decade or so, two dominant platforms have emerged: Java and .NET. During their rise to
power, promises of productivity were made and realized. Yet even with all the advance-
ments in development tools, compilers, and virtual machine performance, and the
multitude of frameworks available, developers began seeking the next level of productiv-
ity that the agile movement had introduced. Java and .NET developers began noticing
that their counterparts who were using dynamic languages like Ruby, Python, and PHP
were becoming increasingly productive, and these developers became jealous. The ever-
moving technology pendulum began to swing back toward dynamic languages. And
probably for the first time in history, the reigning platforms were ready to respond. Both
Java and .NET have, for most of the decade, been able to run multiple languages, so they
joined the race to see which platform would be able to add the right combination of
dynamic languages and associated web frameworks. Meanwhile, a liberation of sorts
took place as the mighty kingdoms embraced the open source community in order to
gain more territory. On the .NET platform, Microsoft sought Ruby and Python and imple-
mented its own versions of Ruby and Python with IronRuby and IronPython, respectively.
The Java platform began by including in its distribution a scripting API and JavaScript
using Mozilla’s Rhino implementation. Then Sun embraced the Ruby community by hir-
ing the developers who created the open source JRuby implementation.

As the revolution continues, a group in the Java community realized the same need for
the productivity and flexibility offered by the dynamic languages yet understood the advan-
tages of staying close to Java’s roots. This group had witnessed the rise of Java a decade
earlier, in part due to the ease of transition from the reigning C and C++ communities, and
it realized the desire of large enterprises to take advantage of existing investments in infra-
structure and education. The group knew that seamless interoperability and API consistency
are important. Out of this group has come the dynamic language Groovy, specifically design
for the Java Virtual Machine (JVM).

When Groovy was designed, it took many of the best features of the existing static
and dynamic languages and fashioned them into a perfect complement to the Java lan-
guage on the Java platform. Groovy is so good, in fact, that it has left the Java community
in quite a quandary. Should the community continue to make investments into enhanc-
ing the Java language by adding some of the productivity features offered by dynamic
languages, such as properties and closures? Or should it push the Java language down the
stack to become the platform system language and embrace Groovy as the proper level of
abstraction for developing applications, as has happened with so many technologies?

xxiii

10450_ch00FM.qxd 5/28/08 2:06 PM Page xxiii

The Groovy revolution almost faltered in the early years with language instabilities, poor
performance, and lack of focus. However, with the advent of the Grails framework, the web
framework and development environment based on Groovy, the 1.0 release enabled
developers to see that the early challenges were gone. This caused a renewed interest
and even a passion for the technologies. Then with the 1.5 release, Groovy finally was able
to perform all the metaprogramming that its rivals like Ruby were able to accomplish.
Developers now see that developing scalable web applications can be productive and fun.

As more and more developers flock to Groovy and Grails, we realized that developers
with no knowledge of Groovy and possibly little or no knowledge of the Java language and
platform need a guide to lead them on their journey to quickly becoming productive with
Groovy and Grails. This book combines our more than 30 years of Java and web develop-
ment experience to assist developers in learning what they need to know to develop great,
exciting, full-featured Web 2.0 applications using Groovy and Grails. It starts with the basic
Groovy language features and ends with a complex web application that includes data-
base persistence, Ajax, RSS feeds, searching, web services, reporting, batch processing,
and even a desktop client to consume web services.

Who This Book Is For
This book is for Java developers and organizations looking to become more productive
by taking advantage of dynamic languages and solid agile web frameworks while lever-
aging current investments in infrastructure, code, and education in the Java platform. It
is for those who want to build internal applications and mission-critical, Internet-facing
applications.

This book does not assume the reader has a strong Java or Groovy background, so
those familiar with other dynamic languages like Perl, Ruby, Python, or PHP will find this
a great source for investigating the Groovy and Grails alternative.

How This Book Is Structured
In this book, you’ll explore how to build command-line, Swing, and web applications using
the Groovy language and the Grails web framework. The step-by-step approach will take
you from a simple to a complex and fully featured Web 2.0 application. Chapters 1–3 pro-
vide a basic Groovy language primer, while Chapters 4–12 explain how to build and deploy
web applications using Grails. The final chapter explains how to use Groovy and Swing to
build a desktop client that interacts with the Grails web application.

• Chapter 1, “Introduction to Groovy”: This chapter defines Groovy, explains how to
install it, and then through example, demonstrates its power, flexibility, and read-
ability compared to the Java language.

■INTRODUCTIONxxiv

10450_ch00FM.qxd 5/28/08 2:18 PM Page xxiv

• Chapter 2, “Groovy Basics”: This chapter explains the basic Groovy syntax, structures,
and tools.

• Chapter 3, “More Advanced Groovy”: This chapter goes beyond the Groovy basics to
cover unit testing, XML processing, templating, and metaprogramming. It includes
a discussion on domain-specific languages.

• Chapter 4, “Introduction to Grails”: This chapter defines the Grails architecture and
its features. It then explains how to install Grails and get started developing appli-
cations with scaffolding.

• Chapter 5, “Building the User Interface”: This chapter explains how to combine
Groovy Server Pages (GSP), controllers, Grails tags, templates, and Cascading Style
Sheets (CSS) to build a basic user interface.

• Chapter 6, “Building Domains and Services”: This chapter explains how Grails uses
a domain-driven approach to developing applications and how domain objects can
be persisted using the powerful Grails Object Relational Mapping (GORM) frame-
work. The chapter concludes by showing how you can organize application logic
into reusable and injectable services.

• Chapter 7, “Security in Grails”: This chapter explains and demonstrates the alterna-
tive security options available in Grails.

• Chapter 8, “Web 2.0—Ajax and Friends”: This chapter explains how to add usability
to your application through adding Ajax functionality, searching, and RSS.

• Chapter 9, “Web Services”: This chapter shows how to expose parts of your applica-
tion to other clients using representational state transfer (REST) web services.

• Chapter 10, “Reporting”: This chapter explains how to use JasperReports and iReports
to expose reports in multiple formats, including PDF, HTML, XML, and XLS.

• Chapter 11, “Batch Processing”: This chapter showcases how to schedule jobs to run
automatically and how to generate e-mail messages.

• Chapter 12, “Deploying and Upgrading”: This chapter describes how to configure,
package, and deploy Grails applications to alternative database and application
servers.

• Chapter 13, “Alternative Clients”: This chapter builds a Swing client using Groovy
that interacts with the Grails application through the RESTful web services built in
Chapter 9.

■INTRODUCTION xxv

10450_ch00FM.qxd 5/28/08 2:06 PM Page xxv

Prerequisites
The code in this book requires Java Software Development Kit (SDK) 1.4 or greater.

Downloading the Code
The code for the examples in this book is available to readers in the Source Code/
Download section of the Apress web site at http://www.apress.com or on the book’s
web site at http://www.beginninggroovyandgrails.com.

Contacting the Authors
For more information about Groovy and Grails, visit the book’s web site at http://www.
beginninggroovyandgrails.com. We welcome any comments or feedback, so feel free to
contact us directly. You can contact Chris directly via e-mail at cjudd@juddsolutions.com
or visit his blog at http://juddsolutions.blogspot.com. You can contact Joseph directly
via e-mail at jnusairat@integrallis.com or visit his blog at http://nusairat.blogspot.com
or his company at http://www.integrallis.com. You can contract Jim directly via e-mail
at shinglerjim@gmail.com or visit his blog at http://jshingler.blogspot.com.

■INTRODUCTIONxxvi

10450_ch00FM.qxd 5/28/08 2:06 PM Page xxvi

http://www.apress.com
http://www.beginninggroovyandgrails.com
http://www
mailto:cjudd@juddsolutions.com
http://juddsolutions.blogspot.com
mailto:jnusairat@integrallis.com
http://nusairat.blogspot.com
http://www.integrallis.com
mailto:shinglerjim@gmail.com
http://jshingler.blogspot.com

Introduction to Groovy

In 1995, Java changed the world. The Internet was in its infancy, and most web sites
offered only static content. But Java changed that by enabling applications called applets
to run inside the browser on many different platforms. Java became a popular general-
purpose language, but its greatest growth and strength has been on the server side. It is
now one of the dominant server-side platforms. But Java is starting to show its age. Many
people are even beginning to call it the new COBOL.

With all these years of baggage, Java has become difficult. There are large barriers of
entry, such as knowing which of the many competing frameworks and specifications to
use. The language itself has remained pretty much unchanged since the early days to
help support backward-compatibility. At this point, many organizations are faced with
a dilemma. Should they switch to a platform like Ruby, LAMP (an open source platform
based on Linux, Apache, MySQL, and PHP, Perl, or Python), or possibly even .NET to try
to become more productive and agile at lower costs so they can better compete in the
marketplace? Do they stick with Java and try to make the most of the large investments
they have made in frameworks, code, education, and infrastructure? Or do they imple-
ment a hybrid and work through integration issues?

Fortunately, there is another option. Keep what is great about the Java platform,
specifically the Java Virtual Machine (JVM) and the large library of Java Application
Programming Interfaces (APIs), and augment the Java language with a more flexible
and productive language. In recent years, many languages have competed to become
the Java language replacement for the JVM. Implementations of languages like Ruby,
Python, and JavaScript run on the JVM. But none of these languages show as much
promise as Groovy, a dynamic language made specifically for the JVM.

In this chapter, we will introduce the Groovy language, describe how to install it, and
give you an idea of the benefits of Groovy by working through an example.

1

C H A P T E R 1

10450_ch01.qxd 5/27/08 1:03 PM Page 1

Groovy Language Features
Groovy is a relatively new dynamic language that can either be interpreted or compiled
and is designed specifically for the Java platform. It has been influenced by languages
such as Ruby, Python, Perl, and Smalltalk, as well as Java.

Unlike other languages that are ported to the JVM, Groovy was designed with the JVM
in mind, so there is little to no impedance mismatch, significantly reducing the learning
curve. Java developers will feel right at home with Groovy. For example, Groovy relies on the
Java API rather than supplying its own API, so developers do not need to decide between
the IO package from Java and the IO methods from the other language libraries. In addition,
because Groovy is built for the JVM, there is tight bytecode-level integration that makes it
easy for Java to integrate with Groovy and Groovy to integrate with Java.

Groovy does not just have access to the existing Java API; its Groovy Development Kit
(GDK) actually extends the Java API by adding new methods to the existing Java classes to
make them more Groovy.

Groovy has support for many of the modern programming features that make other
languages so productive, such as closures and properties. Groovy has also proven to be
a great platform for concepts such as metaprogramming and domain-specific languages.

Groovy is a standard governed by the Java Community Process (JCP)1 as Java Specifi-
cation Request (JSR) 241.2 It is hosted on Codehaus at http://groovy.codehaus.org.

Groovy Installation
Groovy comes bundled as a .zip file or platform-specific installer for Windows, and
Ubuntu, Debian (as well as openSUSE until recent versions). This section will explain
how to install the zipped version, since it covers the widest breadth of platforms.

■Note Because Groovy is Java, it requires Java Development Kit (JDK) 1.4 or above to be installed and the
JAVA_HOME environment variable to be set.

To install Groovy, follow these steps:

1. Download the most recent stable Groovy binary release .zip file from
http://groovy.codehaus.org/Download.

2. Uncompress groovy-binary-X.X.X.zip to your desired location.

CHAPTER 1 ■ INTRODUCTION TO GROOVY2

1. http://www.jcp.org

2. http://www.jcp.org/en/jsr/detail?id=241

10450_ch01.qxd 5/27/08 1:03 PM Page 2

http://groovy.codehaus.org
http://groovy.codehaus.org/Download
http://www.jcp.org
http://www.jcp.org/en/jsr/detail?id=241

3. Set a GROOVY_HOME environment variable to the directory in which you uncom-
pressed the .zip file.

4. Add the %GROOVY_HOME%\bin directory to your system path.

To validate your installation, open a console and type the following:

> groovy -version

You should see something like this:

Groovy Version: 1.5.6 JVM: 1.6.0_02-b06

Groovy by Example
The best way to grasp the power and elegance of Groovy is to compare it to Java using an
example. In the remainder of this chapter, we will show you how to convert the simple
Java class in Listing 1-1 into Groovy. Then we will demonstrate how to adapt the code to
use common Groovy idioms.

Listing 1-1. Simple Java Class

01 package com.apress.bgg;

02

03 import java.util.List;

04 import java.util.ArrayList;

05 import java.util.Iterator;

06

07 public class Todo {

08 private String name;

09 private String note;

10

11 public Todo() {}

12

13 public Todo(String name, String note) {

14 this.name = name;

15 this.note = note;

16 }

17

18 public String getName() {

19 return name;

20 }

CHAPTER 1 ■ INTRODUCTION TO GROOVY 3

10450_ch01.qxd 5/27/08 1:03 PM Page 3

21

22 public void setName(String name) {

23 this.name = name;

24 }

25

26 public String getNote() {

27 return note;

28 }

29

30 public void setNote(String note) {

31 this.note = note;

32 }

33

34 public static void main(String[] args) {

35 List todos = new ArrayList();

36 todos.add(new Todo("1", "one"));

37 todos.add(new Todo("2", "two"));

38 todos.add(new Todo("3","three"));

39

40 for(Iterator iter = todos.iterator();iter.hasNext();) {

41 Todo todo = (Todo)iter.next();

42 System.out.println(todo.getName() + " " + todo.getNote());

43 }

44 }

45 }

If you have any Java experience, you will recognize Listing 1-1 as a basic Todo JavaBean.
It has getters and setters for name and note attributes, as well as a convenience constructor
that takes a name and note for initializing new instances. As you would expect, this class can
be found in a file named Todo.java in the com.apress.bgg package.

The class includes a main() method, which is required for Java classes to be executable
and is the entry point into the application. On line 35, the main() method begins by creating
an instance of a java.util.ArrayList to hold a collection of Todos. On lines 36–38, three Todo
instances are created and added to the todos list. Finally, on lines 40–43, a for statement is
used to iterate over the collection and print the Todo’s name and note to System.out. Notice
that on line 41, the object returned from the iterator must be cast back to a Todo so the
getName() and getNote() methods can be accessed. This is required because Java is type-safe
and because prior to Java 1.5 and the introduction of generics, the Java collections API
interface used java.lang.Object so it could handle any and all Java objects.

CHAPTER 1 ■ INTRODUCTION TO GROOVY4

10450_ch01.qxd 5/27/08 1:03 PM Page 4

Converting Java to Groovy

To convert the Java Todo class in Listing 1-1 to Groovy, just rename the file to Todo.groovy.
That’s right, Groovy derives its syntax from Java. This is often referred to as copy/paste
compatibility. So congratulations, you are a Groovy developer (even if you didn’t know it)!

This level of compatibility, along with a familiar API, really helps to reduce the Groovy
learning curve for Java developers. It also makes it easier to incorporate Java examples found
on the Internet into a Groovy application and then refactor them to make them more Groovy-
like, which is what we will do with Listing 1-1.

To run this Groovy application, from the command line, type the following:

> groovy com\apress\bgg\Todo.groovy

If you are coming from a Java background, you may be a little surprised that you did
not need to first compile the code. Here’s the Java equivalent:

> javac com\apress\bgg\Todo.java

> java com.apress.bgg.Todo

Running the Java application is a two-step process: compile the class using javac, and
then use java to run the executable class in the JVM. But Groovy will compile to bytecode
at runtime, saving a step in the development process and thereby increasing Groovy’s pro-
ductivity.

Groovy provides a lot of syntactic sugar and is able to imply more than Java. You’ll see
this in action as we make our Groovy application more Groovy by applying some of the
Groovy idioms.

Converting a JavaBean to a GroovyBean

Let’s begin by simplifying the JavaBean, which could also be referred to as a Plain Old
Java Object (POJO). Groovy has the GroovyBean, which is a JavaBean with a simpler
Groovy syntax, sometimes referred to as a Plain Old Groovy Object (POGO). GroovyBeans
are publicly scoped by default. Listing 1-2 shows our example using a GroovyBean.

Listing 1-2. Simple Example Using a GroovyBean

01 package com.apress.bgg;

02

03 import java.util.List;

04 import java.util.ArrayList;

05 import java.util.Iterator;

06

07 public class Todo {

CHAPTER 1 ■ INTRODUCTION TO GROOVY 5

10450_ch01.qxd 5/27/08 1:03 PM Page 5

08

09 String name;

10 String note;

11

12 public static void main(String[] args) {

13 List todos = new ArrayList();

14 todos.add(new Todo(name:"1", note:"one"));

15 todos.add(new Todo(name:"2", note:"two"));

16 todos.add(new Todo(name:"3", note:"three"));

17

18 for(Iterator iter = todos.iterator();iter.hasNext();) {

19 Todo todo = (Todo)iter.next();

20 System.out.println(todo.name + " " + todo.note);

21 }

22 }

23 }

Listing 1-2 is significantly shorter than Listing 1-1, primarily because Groovy has a con-
cept of native properties, which means getters and setters do not need to be declared. By
default, all class attributes—such as the name and note attributes on lines 9 and 10—are
public properties and automatically generate corresponding getters and setters in the byte-
code. So if the class is used from Java code, or reflection is used to interrogate the class, you
will see the getters and setters.

These properties also have a more intuitive usage model. They can be assigned or
used directly, as on line 20, where the name and note properties, rather than the getters,
are used to generate the output. Also, rather than needing to explicitly create a conven-
ience constructor for initializing a GroovyBean, you can pass named parameters in the
constructor to initialize any properties you want, as in lines 14–16.

Simplifying the Code

Some of the syntax sugar included in the Groovy language is making semicolons, paren-
theses, and data typing optional. Other interesting features to simplify code include
implicit imports like the java.util.* package, common methods like println() applying
to all objects including Java objects, and more flexible strings. Listing 1-3 applies these
features to our example.

Listing 1-3. Simple Example Applying Syntactic Sugar, Implicit Imports, Common Methods,
and String Features

01 package com.apress.bgg;

02

CHAPTER 1 ■ INTRODUCTION TO GROOVY6

10450_ch01.qxd 5/27/08 1:03 PM Page 6

03 public class Todo {

04

05 String name

06 String note

07

08 public static void main(String[] args) {

09 def todos = new ArrayList()

10 todos.add(new Todo(name:"1", note:"one"))

11 todos.add(new Todo(name:"2", note:"two"))

12 todos.add(new Todo(name:"3", note:"three"))

13

14 for(Iterator iter = todos.iterator();iter.hasNext();) {

15 def todo = iter.next()

16 println "${todo.name} ${todo.note}"

17 }

18 }

19 }

In Listing 1-3, under the package declaration we no longer need to import
java.util.List, java.util.ArrayList, and java.util.Iterator. These are implicitly
imported since they are in the java.util.* package. Other implicitly included pack-
ages are java.lang.*, java.net.*, java.io.*, groovy.lang.*, and groovy.util.*.

Also notice that, other than in the for statement (which we will clean up in the next
round of refactoring), all the semicolons have been removed.

On line 16, we have used optional parentheses with the implicit println() method.
But that is not the only change to line 16. The println() method has been modified to use
Groovy’s GString format, which is similar to the Apache Ant3 property format, rather than
concatenating two strings. We’ll cover Groovy strings in Chapter 2. At this point, just notice
how much simpler this is to read.

Lines 9 and 15 have been changed to use optional typing. The variables todos and
todo are no longer typed to List or Todo, respectively. Groovy uses “duck typing,” which
means if it sounds like a duck and walks like a duck, it must be a duck. Do you really
care what the type of an object is, as long as you can pass it a message and it will han-
dle the request if it can? If the object cannot handle the request, you will receive
a groovy.lang.MissingMethodException or groovy.lang.MissingPropertyException. Of
course, where you think typing is necessary, you always have the option of explicitly
typing variables.

CHAPTER 1 ■ INTRODUCTION TO GROOVY 7

3. http://ant.apache.org

10450_ch01.qxd 5/27/08 1:03 PM Page 7

http://ant.apache.org

Using Groovy Collection Notation and Closure

The next step in refactoring the example is to take advantage of Groovy’s collection and
map notation, as well as replace the ugly for statement with a more elegant closure. List-
ing 1-4 shows this version.

Listing 1-4. Example with the Groovy Collection Notation and Closure

01 package com.apress.bgg;

02

03 public class Todo {

04

05 String name

06 String note

07

08 public static void main(String[] args) {

09 def todos = [

10 new Todo(name:"1", note:"one"),

11 new Todo(name:"2", note:"two"),

12 new Todo(name:"3", note:"three")

13]

14

15 todos.each {

16 println "${it.name} ${it.note}"

17 }

18 }

19 }

Notice how the ArrayList was replaced with []. Again, this is just syntactic sugar; Groovy
really is instantiating an ArrayList. Similarly, we can create maps with the [:] syntax.

Also to make the code more clean, we can initialize the list without needing to call
the add() method for each entry. Then to simplify the iteration, we call the each()
method, passing a closure that prints out the string. Notice that, by default, the iteration
variable is it. Chapter 2 will provide more explanations and examples of Groovy lists,
maps, and closures.

Getting Rid of Main()

One bit of Java ugliness left in our example is the main() method. After all these improve-
ments, the main() method now just sticks out. Fortunately, Groovy has a concept of scripts
as well as classes, and we can turn this into a script, removing the need for the main()
method.

CHAPTER 1 ■ INTRODUCTION TO GROOVY8

10450_ch01.qxd 5/27/08 1:03 PM Page 8

To begin, the file must be renamed to something like Todos.groovy. This is because
a script will also be compiled to a class, and if we didn’t change the name, there would be
a name clash between the Todo class and the Todo script.

Then we simply move the code that currently exists in the main() method outside the
Todo class. When the script is run, it will behave the same as before. Listing 1-5 shows the
script version.

Listing 1-5. Example As a Script

package com.apress.bgg;

public class Todo {

String name

String note

}

def todos = [

new Todo(name:"1", note:"one"),

new Todo(name:"2", note:"two"),

new Todo(name:"3", note:"three")

]

todos.each {

println "${it.name} ${it.note}"

}

Finally, we have elegant, easy-to-read code at a fraction of what we started with in
Java. It should be obvious that if we had started with the Groovy idioms to begin with, the
Groovy approach would have been much more productive.

Summary
This chapter provided a brief introduction to Groovy. After describing how to install it, we
demonstrated how you can dramatically reduce the code it takes to write the equivalent
Java class in Groovy, while increasing the readability and expressiveness. In the next
chapter, we will continue exploring Groovy by looking at its basic language features.

CHAPTER 1 ■ INTRODUCTION TO GROOVY 9

10450_ch01.qxd 5/27/08 1:03 PM Page 9

10450_ch01.qxd 5/27/08 1:03 PM Page 10

Groovy Basics

Chapter 1 introduced you to Groovy, its relationship to Java, and where it differs. This
chapter will delve into the Groovy language. The focus will be on language features com-
monly used to build Grails applications. First, you will learn about Groovy scripts, including
compiling and running Groovy scripts using the command line, Groovy Shell, and Groovy
Console. Then we will focus on specific aspects of the Groovy language: assertions, strings,
methods, closures, collections, ranges, regular expressions, and operators.

Scripts
You will be using the Groovy language to build: domain objects, controllers, and services.
But that isn’t the only way to use Groovy. In addition to building classes, you can use
Groovy as a scripting language.

You will see detailed examples of scripts in Chapter 12, which covers using scripts in
an application context to access a web service. But here we’ll start with a simple script.
Listing 2-1 is an example of a very simple Groovy “Hello” script that takes an argument
and uses it to print a message.

Listing 2-1. A Simple Groovy Script, Hello.groovy

println "Hello ${args[0]}, may Groovy be with you."

Execute the script by typing the following on the command line:

>groovy Hello "Luke Skywalker"

■Note If you are on Windows environment and installed Groovy with the installer, you can omit the groovy
on the command line. By default, the installer is set up to map files with the .groovy file extension to the
Groovy runtime.

11

C H A P T E R 2

10450_ch02.qxd 5/15/08 6:05 PM Page 11

The script will output the results:

Hello Luke Skywalker, may Groovy be with you.

On execution of the script, Groovy generates a class with the same name as the script
source file, including a main method that contains the script source.

The equivalent Java application would look like Listing 2-2.

Listing 2-2. The Java Version, HelloJava.java

package com.apress.beginninggrails.cli.scripts;

public class HelloJava {

public static void main(String[] args) {

System.out.println("Hello "+ args[0], may Java be with you.);

}

}

Notice how much more verbose the Java version is compared to the Groovy version.
With Java, you need to define a class and a main method. You also must fully qualify the
println method, add parentheses, and terminate it with a semicolon. Then you need all
of the closing curly braces. Even if you are a Java fan, you have to admit that the Groovy
example is a good bit shorter and easier to read! Furthermore, you don’t need to go
through a separate step of compiling Groovy before it is executed.

Using Script Functions

Just like most scripting languages, Groovy scripts can be organized into blocks of reusable
code. In scripts, these blocks are called functions. Listing 2-3 is an example of creating and
using a function. It creates a simple function to print a name and calls the function with
two different names.

Listing 2-3. A Script Function, PrintFullName.groovy

def printFullName(firstName, lastName) {

println "${firstName} ${lastName}"

}

printFullName('Luke', 'SkyWalker')

printFullName('Darth', 'Vader')

CHAPTER 2 ■ GROOVY BASICS12

10450_ch02.qxd 5/15/08 6:05 PM Page 12

This example defines the printFullName function, which takes two parameters. Next,
the function is invoked twice: once to print Luke Skywalker and again to print Darth Vader.

Compiling Groovy

In the previous examples, we let Groovy compile the script on the fly. Like Java, Groovy
can be compiled to Java bytecode. Listing 2-4 illustrates compiling the Groovy script in
Listing 2-1.

Listing 2-4. Compiling Groovy with groovyc

groovyc Hello.groovy

As you might expect, compiling Hello.groovy results in Hello.class. Because groovyc
compiles to Java bytecode, you can use the Java command line to execute it. Listing 2-5
illustrates running the program using Java.

Listing 2-5. Running the Groovy Program Using Java

java -cp %GROOVY_HOME%/embeddable/groovy-all-1.5.4.jar;. Hello "Luke Skywalker"

Hello Luke Skywalker

Being able to run the Groovy program using Java proves it—Groovy is Java. If you
look at Listing 2-5, you’ll see that the only thing special required to run the Groovy com-
piler is to include groovy-all-<version>.jar on the classpath.

The Groovy compiler is a joint compiler. It can compile Groovy and Java code at
the same time. The joint compiler first became available in Groovy 1.5 through a gen-
erous donation by JetBrains, the makers of IntelliJ IDEA. The joint compiler allows you
to compile Groovy and Java files with a single compile statement. Listings 2-6 and 2-7
are a Groovy file and a Java file, respectively, to demonstrate joint compilation.

Listing 2-6. A Sample Groovy File, Name.groovy

class Name

{

String firstName

String toString() { return "Hello ${firstName}, Java calling Groovy" }

}

CHAPTER 2 ■ GROOVY BASICS 13

10450_ch02.qxd 5/15/08 6:05 PM Page 13

Listing 2-7. A Sample Java File, SayHello.java

public class SayHello

{

public static void main(String args[])

{

Name name = new Name();

name.setFirstName(args[0]);

System.out.println(name.toString());

}

}

The Java class, SayHello, instantiates the Groovy class Name and sets the firstName
property to a value passed in on the command line. Listing 2-8 illustrates compiling and
executing the programs.

Listing 2-8. Joint Compile and Execute

groovyc *.groovy *.java

java -cp %GROOVY_HOME%/embeddable/groovy-all-1.5.6.jar;. SayHello "Luke"

Hello Luke, Java calling Groovy

Compiling the Groovy and Java classes is accomplished by telling groovyc to compile
files matching the file pattern ending in .groovy and .java. You run the program in the
same way that you run any other Java program—just include groovy-all-<version>.jar
in the classpath.

■Caution If you run groovyc without parameters, you will get the usage information. Looking at the
usage information, you might come to the conclusion that you should use the –j switch. Groovy 1.5.0–1.5.5
had a bug1 that would cause a compile error when using the –j switch. The bug was fixed in Groovy 1.5.6. If
you are using an older version of Groovy and encounter an error, try not using the –j switch.

Running Groovy

You can run Groovy scripts and classes through the command line, Groovy Shell, or
Groovy Console. Let’s look at each technique.

CHAPTER 2 ■ GROOVY BASICS14

1. https://jira.codehaus.org/browse/GROOVY-2747

10450_ch02.qxd 5/15/08 6:05 PM Page 14

https://jira.codehaus.org/browse/GROOVY-2747

Command Line

To run Groovy from the command line,2 you have two or three options:

• Use Groovy directly by typing groovy MyPgm at the command line. (If you installed
Groovy using the Windows installer, you can omit groovy and just type MyPgm.)
If you are running a script, Groovy will generate a class with a main method con-
taining the script commands, compile the script, and execute it. If you don’t want
to recompile the file each time it is run, you can use the third option.

• Compile the file using groovyc into a class and execute it using Java. You saw an
example of this approach in the previous section.

• If you’re in the Windows environment and Groovy was installed with the Windows
Installer with the PATHEXT option, you can omit the leading groovy and just type
MyPgm.groovy. The PATHEXT option associates files ending with .groovy to the Groovy
runtime. On Unix platforms, you can use a shebang at the top of the file to get the
same result:

#!/usr/bin/groovy

println "Hello ${args[0]}, may Groovy be with you."

Groovy Shell

The Groovy Shell3 is an interactive command-line application (shell) that allows you to
create, run, save, and load Groovy scripts and classes. To start the Groovy Shell, run
groovysh. Figure 2-1 illustrates using the Groovy Shell to execute a simple script.

Figure 2-1. Using the Groovy Shell

CHAPTER 2 ■ GROOVY BASICS 15

2. http://groovy.codehaus.org/Groovy+CLI

3. http://groovy.codehaus.org/Groovy+Shell

10450_ch02.qxd 5/15/08 6:05 PM Page 15

http://groovy.codehaus.org/Groovy+CLI
http://groovy.codehaus.org/Groovy+Shell

As you can see, the script prints Hello Luke Skywalker. Then you see ===> null. As
a matter of convention, Groovy always returns the results of methods. In this case, there
is no result, so null is returned.

The Groovy Shell contains a built-in help facility that you can use to learn more
about the shell. To access it, type help at the prompt. Figure 2-2 shows the help listing.

Figure 2-2. Groovy Shell help information

Groovy Console

The Groovy Console,4 shown in Figure 2-3, is a graphical version of the Groovy Shell. It is
written using SwingBuilder, a Groovy module that makes building Swing user interfaces
easier.

Figure 2-3. Groovy Console

CHAPTER 2 ■ GROOVY BASICS16

4. http://groovy.codehaus.org/Groovy+Console

10450_ch02.qxd 5/15/08 6:05 PM Page 16

http://groovy.codehaus.org/Groovy+Console

You can start the Groovy Console in a number of ways, depending on your environ-
ment and how you installed Groovy. The easiest way is to execute groovyConsole, which is
located in the Groovy bin directory.

The console provides the ability to create, save, load, and execute classes and scripts.
Some of the nice features of the console are undo/redo and the ability to inspect variables.

If you have to choose between using the Groovy Shell and the Groovy Console, we
recommend the Groovy Console. To a beginner, the Groovy Shell behavior can seem to be
a bit unpredictable. For example, try the code from Listing 2-9 in the shell and then in the
console.

Listing 2-9. Shell/Console Experiment

name = "Luke Skywalker"

def name = "Darth Vader"

println name

Running this code from the shell results in Luke Skywalker being printed. Running the
code from the console results in Darth Vader being printed. The reason for the difference can
be found in the Groovy Shell documentation.5 The first instance of name causes a shell vari-
able to be created and assigned the value Luke Skywalker. The second instance of name (def
name) causes a local variable to be created and assigned the value Darth Vader. The shell exe-
cutes expressions as soon as it sees a complete expression. In the case of the second instance
of name, it was a complete expression that was executed and immediately went out of scope.
When the final line of code (println) is executed, the only currently accessible name variable
is assigned the value Luke Skywalker.

Assertions
As a developer, if you have used JUnit6 (or any of the flavors of JUnit), you already have
some idea what an assertion is. An assertion is used to validate that an expected condi-
tion is true. If the expected condition is not true, a java.lang.AssertionError7 is thrown.
You test that the expected condition is true by using Groovy expressions.

Taking advantage of Groovy’s truth8 required Groovy developers to create their own
version of assert. They could not leverage the Java version of assert9 because it is

CHAPTER 2 ■ GROOVY BASICS 17

5. http://groovy.codehaus.org/Groovy+Shell#GroovyShell-Variables

6. http://www.junit.org

7. http://java.sun.com/j2se/1.4.2/docs/api/java/lang/AssertionError.html

8. http://groovy.codehaus.org/Groovy+Truth

9. http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

10450_ch02.qxd 5/15/08 6:05 PM Page 17

http://groovy.codehaus.org/Groovy+Shell#GroovyShell-Variables
http://www.junit.org
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/AssertionError.html
http://groovy.codehaus.org/Groovy+Truth
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

restricted to Java’s version of truth. You will also notice that the syntax is the same.
Listing 2-10 illustrates the Java and Groovy versions of assert.

Listing 2-10. Java and Groovy Assertions

// Java assert

assert 1==2 : "One isn't Two";

// Groovy assert

assert 1==2 : "One isn't Two"

As you can see, the Groovy assert syntax is the same as Java’s, except for the ending
semicolon. The message is to the right of the expression and separated by a colon. As with
Java, the message portion of the assert is optional.

■Tip As a best practice, when you are using assertions, you should include a message. It will help the next
person maintaining your code to understand its intent.

When an assertion fails, Groovy throws a java.lang.AssertionError. Listing 2-11 is an
example of the Groovy assertion in Listing 2-10 failing.

Listing 2-11. Sample Assertion Failure

ERROR java.lang.AssertionError: One isn't Two Expression: (1 == 2)

As you can see, the error message from Listing 2-10 is embedded in Listing 2-11.
Assertions are very handy and one of the cornerstones of good testing. They also do

a great job of clarifying intentions. You will see assertions in many of the examples
throughout this book.

Strings
Like most modern languages, Groovy has the concept of a string. In Groovy, a string can
be defined three different ways: using double quotes, single quotes, or slashes (called
“slashy strings”). Listing 2-12 illustrates the three different ways to define a string.

CHAPTER 2 ■ GROOVY BASICS18

10450_ch02.qxd 5/15/08 6:05 PM Page 18

Listing 2-12. Groovy String Definition

01 // Quote

02 def helloChris = "Hello, Chris"

03 println helloChris.class.name // java.lang.String

04

05 // Single quote

06 def helloJoseph = 'Hello, Joseph'

07 println helloJoseph.class.name // java.lang.String

08

09 // Slashy string

10 def helloJim = /Hello, Jim/

11 println helloJim.class.name // java.lang.String

Just to prove that the variables are normal java.lang.String strings, run the code in
Listing 2-12. The output should look like this:

java.lang.String

java.lang.String

java.lang.String

Groovy also supports a more advanced string called a GString. A GString is just like
a normal string, except that it evaluates expressions that are embedded within the string,
in the form ${...}. When Groovy sees a string defined with double quotes or slashes and
an embedded expression, Groovy constructs an org.codehaus.groovy.runtime.GStringImpl
instead of a java.lang.String. When the GString is accessed, the expression is evaluated.
Listing 2-13 illustrates using a GString and embedded expressions.

Listing 2-13. GString and Embedded Expressions

01 def name = "Jim"

02 def helloName = "Hello, ${name}"

03 println helloName // Hello, Jim

04 println helloName.class.name // org.codehaus.groovy.runtime.GStringImpl

05

06 def helloNoName = 'Hello, ${name}'

07 println helloNoName // Hello, ${name}

08 println helloNoName.class.name // java.lang.String

09

10 def helloSlashyName = /Hello, ${name}/

11 println helloSlashyName // Hello, Jim

12 println helloSlashyName.class.name // org.codehaus.groovy.runtime.GStringImpl

CHAPTER 2 ■ GROOVY BASICS 19

10450_ch02.qxd 5/15/08 6:05 PM Page 19

Run the code in Listing 2-13 to see the expression evaluation and class names:

Hello, Jim

org.codehaus.groovy.runtime.GStringImpl

Hello, ${name}

java.lang.String

Hello Jim

org.codehaus.groovy.runtime.GStringImpl

Let’s take a look at Listing 2-13 in a little more detail:

• Line 1 defines a variable, name, and assigns the value "Jim".

• Line 2 defines a GString, helloName, and assigns it to "Hello" plus the expression
${name}.

• Line 3 prints the GString. Accessing the GString causes the expression to be evalu-
ated and results in Hello, Jim.

• Line 4 prints out helloName’s class name to prove that it is a GString.

• Lines 6–8 take the same approach but define the string with single quotes. The
result is a regular Java string, and the expression is not evaluated.

• Lines 10–12 take the same approach but define the string using slashes. The result
is a GString, just as in the first example. When the string is printed, the expression
is evaluated, and Hello, Jim is printed.

The evaluation of expressions within strings is called interpolation, as discussed next.

String Interpolation

String interpolation is the ability to substitute an expression or variable within a string. If
you have experience with Unix shell scripts, Ruby, or Perl, this should look familiar. If you
look closely at Listing 2-13, you can see string interpolation in action. Strings defined
using double quotes and slashes will evaluate embedded expressions within the string
(see lines 2 and 10 of Listing 2-13). Strings defined with single quotes don’t evaluate the
embedded expressions (see line 6 of Listing 2-13).

Java doesn’t support string interpolation. You must manually concatenate the values
together. Listing 2-14 is an example of the type of code you need to write in Java.

CHAPTER 2 ■ GROOVY BASICS20

10450_ch02.qxd 5/15/08 6:05 PM Page 20

Listing 2-14. Building Strings with Java

String name = "Jim";

String helloName = "Hello " + name;

System.out.println(helloName);

While this is an extremely simple example, imagine what it might look like if you
were building some XML or a SQL statement. It gets very difficult to read very quickly.

String interpolation is a nice feature and is used in the examples throughout this book
to build up strings.

Multiline Strings

Groovy supports strings that span multiple lines. A multiline string is defined by using
three double quotes or three single quotes.

Multiline string support is very useful for creating templates or embedded documents
(such as XML templates, SQL statements, HTML, and so on). For example, you could use
a multiline string and string interpolation to build the body of an e-mail message, as shown
in Listing 2-15. String interpolation with multiline strings works in the same way as it does
with regular strings: multiline strings created with double quotes evaluate expressions, and
single-quoted strings don’t.

Listing 2-15. Using Multiline Strings

def name = "Jim"

def multiLineQuote = """

Hello, ${name}

This is a multiline string with double quotes

"""

println multiLineQuote

println multiLineQuote.class.name

def multiLineSingleQuote = '''

Hello, ${name}

This is a multiline string with single quotes

'''

println multiLineSingleQuote

println multiLineSingleQuote.class.name

CHAPTER 2 ■ GROOVY BASICS 21

10450_ch02.qxd 5/15/08 6:05 PM Page 21

Running the code in Listing 2-15 results in the following output:

Hello, Jim

This is a multiline string with double quotes

org.codehaus.groovy.runtime.GStringImpl

Hello, ${name}

This is a multiline string with single quotes

java.lang.String

Slashy Strings

As mentioned earlier, slashes can be used to define strings. The slashy notation has a very
nice benefit: additional backslashes are not needed to escape special characters. The only
exception is escaping a backslash: \/. The slashy notation can be helpful when creating a
regular expression requiring a backslash or a path. Listing 2-16 illustrates the difference
between using regular quotes and slashes to define a regular expression to match a file sys-
tem path.

Listing 2-16. Using Slashy Strings

def winpathQuoted='C:\\windows\\system32'

def winpathSlashy=/C:\windows\system32/

println winpathSlashy // C:\windows\system32

assert winpathSlashy ==~ '\\w{1}:\\\\.+\\\\.+'

assert winpathSlashy ==~ /\w{1}:\\.+\\.+/

Listing 2-16 defines two variables and assigns them to a directory path. The first vari-
able definition, winpathQuoted, uses the single-quote notation to define a string. Using the
single-quote notation requires that the embedded backslash be escaped using an addi-
tional backslash. The first assert statement, which tests the regular expression defined
using single quotes, also requires the addition of an extra backslash to escape a back-
slash. Notice how using the slashy notation doesn’t require the additional backslashes.

Clearly, it is easier to write and read winpathSlashy, and the second regular expression
is easer to write and read as well. Regular expressions and the ==~ operator will be covered
in more detail in the “Regular Expressions” section later in this chapter.

CHAPTER 2 ■ GROOVY BASICS22

10450_ch02.qxd 5/15/08 6:05 PM Page 22

Methods and Closures
You can define a block of reusable code in Groovy in two ways: as a method, as in Java,
and as a closure.

Methods

Listing 2-17 illustrates defining a method in Groovy the Java way.

Listing 2-17. Defining a Method the Java Way

public String hello(String name) {

return "Hello, " + name;

}

Listing 2-18 illustrates defining the method using the Groovy idiom.

Listing 2-18. Defining a Method Using the Groovy Idiom

def hello(name) {

"Hello, ${name}"

}

The Groovy way of defining is method is a bit more compact. It takes advantage of
a couple of Groovy’s optional features:

• The return type and the return statement are not included in the body of the
method. Groovy always returns the results of the last expression—in this case, the
GString "Hello, . . . ".

• The access modifier public is not defined. By default, unless you specify otherwise,
Groovy defaults all classes, properties, and methods to public access.

■Note Strictly speaking, the Groovy version of the hello method (Listing 2-18) is not exactly like the Java
version (Listing 2-17). The corresponding Java signature of the method would be: public Object
hello(Object name) But, functionally, they are very close to being the same.

CHAPTER 2 ■ GROOVY BASICS 23

10450_ch02.qxd 5/15/08 6:05 PM Page 23

Closures

A Groovy closure is a block of reusable code within curly braces {}, which can be assigned
to a property or a variable, or passed as a parameter to a method.10 The code within the
curly braces is executed when the closure is invoked. In this form, the closure functions
just like a Java method. The difference between methods and closures is that a closure is
an object, and a method isn’t. You will see why this is valuable in just a few moments.
Listing 2-19 is an example of defining and invoking a closure.

Listing 2-19. Using a Closure

def name = "Chris"

def printClosure = { println "Hello, ${name}" }

printClosure()

name = "Joseph"

printClosure()

Hello, Chris

Hello, Joseph

This example demonstrates that just like methods, closures can access variables
defined in the same scope as the closure.

And just as with methods, parameters can be passed to closures as well. Listing 2-20
shows an example of passing parameters to closures.

Listing 2-20. Passing Parameters to Closures

def printClosure = {name -> println "Hello, ${name}" }

printClosure("Chris")

printClosure("Joseph")

printClosure "Jim"

CHAPTER 2 ■ GROOVY BASICS24

10. http://groovy.codehaus.org/Closures+-+Formal+Definition and http://groovy.codehaus.org/Clo-
sures+-+Informal+Guide

10450_ch02.qxd 5/15/08 6:05 PM Page 24

http://groovy.codehaus.org/Closures+-+Formal+Definition
http://groovy.codehaus.org/Clo-sures+-+Informal+Guide
http://groovy.codehaus.org/Clo-sures+-+Informal+Guide
http://groovy.codehaus.org/Clo-sures+-+Informal+Guide

Hello, Chris

Hello, Joseph

Hello, Jim

In this example, printClosure takes a name parameter. Compare Listing 2-19 to
Listing 2-20. Listing 2-19 is an example of closure accessing the name variable, and
Listing 2-20 is an example of a closure taking a name parameter.

The third invocation of printClosure in Listing 2-20 does not include parentheses.
This is not a typo. This is another one of the optional parts of Groovy. The fact that there
is a parameter after the closure name helps Groovy infer that you want the closure
invoked. This works only when a parameter is involved. In Listing 2-19, where there are
no parameters, the parentheses are required.

Multiple parameters can be passed as well. Listing 2-21 illustrates calling a closure
with multiple parameters.

Listing 2-21. Passing Multiple Parameters to a Closure

def printClosure = {name1, name2, name3 -> println "Hello, ${name1},

${name2}, ${name3}" }

printClosure "Chris", "Joseph", "and Jim"

Hello, Chris, Joseph, and Jim

In this example, the "Hello, . . ." and expressions were evaluated when the closure
was invoked.

An advanced usage of closures is to bind the closure to values at the time it is
defined. Listing 2-22 is an example of using this technique to create a timer.

Listing 2-22. Binding Values to Closures

01 def startTimer() {

02 def initialDate = new java.util.Date()

03 return { println "${initialDate} - ${new java.util.Date()} : Elapsed time

${System.currentTimeMillis() - initialDate.time}" }

04 }

05

06 def timer = startTimer()

07 // Simulate some work

CHAPTER 2 ■ GROOVY BASICS 25

10450_ch02.qxd 5/15/08 6:05 PM Page 25

08 sleep 30000

09 timer()

10 // Simulate some more work

11 sleep 30000

12 timer()

13

14 // Reset the timer

15 println "Reset the Timer"

16 timer = startTimer()

17 timer()

18 sleep 30000

19 timer()

Sat Mar 01 09:29:27 EST 2008 - Sat Mar 01 09:29:57 EST 2008 : Elapsed time 29998

Sat Mar 01 09:29:27 EST 2008 - Sat Mar 01 09:30:27 EST 2008 : Elapsed time 59997

Reset the timer

Sat Mar 01 09:30:27 EST 2008 - Sat Mar 01 09:30:27 EST 2008 : Elapsed time 0

Sat Mar 01 09:30:27 EST 2008 - Sat Mar 01 09:30:57 EST 2008 : Elapsed time 29999

In Listing 2-22, lines 1–4 define a method, startTimer(), that returns a closure. The
value of the variable initialDate, a java.util.Date object, is bound to the closure at the
time it is defined, in line 6. In lines 7–12, when the closure is invoked, the expressions are
evaluated. Line 16 invokes the startTimer() method, which causes the closure to be rede-
fined and the results in the timer to be reset.

A closure is an object. You can pass closures around just like any other objects.
A common example is iterating over a collection using a closure. Listing 2-23 illustrates
passing a closure as a parameter.

Listing 2-23. Passing a Closure As a Parameter

def list = ["Chris", "Joseph", "Jim"]

def sayHello = { println it }

list.each(sayHello)

Notice that sayHello is a property whose value is a closure. It is passed to the each()
method so that as each() iterates over the list, the sayHello closure is invoked.

CHAPTER 2 ■ GROOVY BASICS26

10450_ch02.qxd 5/15/08 6:05 PM Page 26

Collections
Groovy supports a number of different collections, including lists, ranges, sets, arrays,
and maps. Let’s look at how to create and use each of the collection types.

Lists

A Groovy list11 is an ordered collection of objects, just as in Java. It is an implementation
of the java.util.List12 interface. In the course of building Grails applications, it is com-
mon to see lists returned from the controllers and services. Listing 2-24 illustrates creating
a list and common usages.

Listing 2-24. Creating and Using Lists

01 def emptyList = []

02 println emptyList.class.name // java.util.ArrayList

03 println emptyList.size // 0

04

05 def list = ["Chris"] // List with one item in it

06 // Add items to the list

07 list.add "Joseph" // Notice the optional () missing

08 list << "Jim" // Notice the overloaded left-shift operator

09 println list.size // 3

10

11 // Iterate over the list

12 list.each { println it } // Chris Joseph Jim

13

14 // Access items in the list

15 println list[1] // Joseph // Indexed access

16 list[0] = "Christopher"

17 println list.get(0) // Christopher

18

19 list.set(0, "Chris") // Set the 0 item to Chris

20 println list.get(0) // Chris

21

22 list.remove 2

23 list-= "Joseph" // Overloaded - operator

24 list.each { println it } // Chris

CHAPTER 2 ■ GROOVY BASICS 27

11. http://groovy.codehaus.org/JN1015-Collections

12. http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html

10450_ch02.qxd 5/15/08 6:05 PM Page 27

http://groovy.codehaus.org/JN1015-Collections
http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html

25

26 list.add "Joseph"

27 list+="Jim" // Overloaded + operator

28 list.each { println it } // Chris Joseph Jim

29 println list[-1] // Jim

On line 1 of Listing 2-24, an empty list is created by assigning a property the value of [].
Line 2 prints out the list’s class name so that you can see that it is a java.util.ArrayList.
Line 3 prints the list’s size, which is 0.

Lines 5–9 create a list with an item already in it and show two ways to add items to
the list. Line 12 iterates over the list, invoking the closure to print out the contents. The
each() method provides the ability to iterate over all elements in the list, invoking the clo-
sure on each element. This is an example of using a closure as a parameter to a method.

Lines 15–17 illustrate using an index to access a list. Lists are zero-based. Line 15
shows accessing the second item in the list. Line 16 shows using an index to assign posi-
tion 0 the value "Christopher". Line 17 accesses the list using the get() method. Lines
19–20 use the set() method to assign the first position in the list and then print it out.

Lines 22–24 remove items from the list using the remove() method and the minus
operator. Lines 26–28 add items to the list using the add() method and the plus operator.

Line 29 is interesting—it uses the index value -1. Using a negative index value causes
the list to be accessed in the opposite order, or from last to first.

Ranges

A range is a list of sequential values. Logically, you can think of it as 1 through 10 or a
through z. As a matter of fact, the declaration of a range is exactly that: 1..10, or 'a'..'z'.

A range is a list of any objects that implements java.lang.Comparable.13 The objects
have next() and previous() methods to facilitate navigating through the range. This
means that with a bit of work, it is possible to use your own Groovy objects within
a range. Listing 2-25 illustrates some of things you can do with ranges.

Listing 2-25. Creating and Using Ranges

01 def numRange = 0..9

02 println numRange.size() // 10

03 numRange.each {print it} // 0123456789

04 println ""

05 println numRange.contains(5) // true

06

CHAPTER 2 ■ GROOVY BASICS28

13. http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Comparable.html

10450_ch02.qxd 5/15/08 6:05 PM Page 28

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Comparable.html

07 def alphaRange = 'a'..'z'

08 println alphaRange.size() // 26

09 println alphaRange[1] // b

10

11 def exclusiveRange = 1..<10

12 println exclusiveRange.size() // 9

13 exclusiveRange.each {print it} // 123456789

14 println ""

15 println exclusiveRange.contains(10) // false

16

17 def reverseRange = 9..0

18 reverseRange.each {print it} // 9876543210

Lines 1, 7, 11, and 17 illustrate defining ranges. Line 1 defines an inclusive range of
numbers. Line 7 defines an inclusive range of lowercase letters. Line 11 defines an exclu-
sive list of numbers. The range results in a range of numbers 1–9, excluding 10. Line 17
creates a range in reverse order, 9 through 0.

Frequently, ranges are used for iterating. In Listing 2-25, each() was used to iterate
over the range. Listing 2-26 shows three ways you could use a range to iterate: one Java
and two Groovy.

Listing 2-26. Iterating with Ranges

01 println "Java style for loop"

02 for(int i=0;i<=9;i++) {

03 println i

04 }

05

06 println "Groovy style for loop"

07 for (i in 0..9) {

08 println i

09 }

10

11 println "Groovy range loop"

12 (0..9).each { i->

13 println i

14 }

Listing 2-26 starts off by showing a classic Java style for loop. Lines 7–9 are an exam-
ple of the same loop using the Groovy style for loop. Lines 12–14 illustrate yet another
technique for looping, by using a range and the each() method.

CHAPTER 2 ■ GROOVY BASICS 29

10450_ch02.qxd 5/15/08 6:05 PM Page 29

Sets

A Groovy set14 is an unordered collection of objects, with no duplicates, just as in Java. It is
an implementation of java.util.Set.15 By default, unless you specify otherwise, a Groovy
set is a java.util.HashSet.16 If you need a set other than a HashSet, you can create any type
of set by instantiating it; for example, def aTreeSet = new TreeSet(). In general, we
encourage you just to think of it as a regular set. Listing 2-27 illustrates creating sets and
common usages.

Listing 2-27. Creating and Using Sets

01 def emptySet = [] as Set

02 println emptySet.class.name // java.util.HashSet

03 println emptySet.size() // 0

04

05 def list = ["Chris", "Chris"]

06 def set = ["Chris", "Chris"] as Set

07 println "List Size: ${list.size()} Set Size: ${set.size()}" // List Size: 2 Set

Size: 1

08 set.add "Joseph"

09 set << "Jim"

10 println set.size() // 3

11 println set // ["Chris", "Jim", "Joseph"]

12

13 // Iterate over the set

14 set.each { println it }

15 S

16 set.remove 2

17 set-= "Joseph" // Overloaded - operator

18 set.each { println it } // Chris

19 set+= "Joseph"

20 set+= "Jim"

21 set.each { println it } // Chris Joseph Jim

22

23 // Convert a set to a list

24 List = set as List

CHAPTER 2 ■ GROOVY BASICS30

14. http://groovy.codehaus.org/JN1015-Collections

15. http://java.sun.com/j2se/1.4.2/docs/api/java/util/Set.html

16. http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashSet.html

10450_ch02.qxd 5/15/08 6:05 PM Page 30

http://groovy.codehaus.org/JN1015-Collections
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Set.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashSet.html

25 println list.class.name // java.util.ArrayList

26 println set.asList().class.name // java.util.ArrayList

27 println set.toList().class.name // java.util.ArrayList

Creating an empty set is similar to creating an empty list. The difference is the addi-
tion of the as Set clause. Lines 5–7 illustrate that a list allows duplicates and a set doesn’t.
Lines 8–21 shouldn’t be any surprise. One of the important differences between a list and
a set is that a list provides indexed-based access and a set doesn’t. Lines 24 and 26 show
two different techniques to convert a Set into a List.

Arrays

A Groovy array17 is a sequence of objects, just like a Java array.18 Groovy makes working
with arrays a little easier, but you have the same limitations as with Java arrays.
Listing 2-28 illustrates creating and using arrays.

Listing 2-28. Creating and Using Arrays

01 def stringArray = new String[3]

02 println stringArray.size()

03 stringArray[0] = "Chris"

04 println stringArray // {"Chris", null, null}

05 stringArray[1] = "Joseph"

06 stringArray[2] = "Jim"

07 println stringArray // {"Chris", "Joseph", "Jim"}

08 println stringArray[1] // Joseph

09 stringArray.each { println it} // Chris, Joseph, Jim

10 println stringArray[-1..-3] // ["Jim", "Joseph", "Chris"]

Line 1 creates a string array of size 3. Lines 3–8 use an index to access the array. Line
9 illustrates using the each() method to iterate through the array. That deserves a second
look. Yes, the each() method is available on the array, which is very convenient. Line 10
also shows something interesting—it uses a range to access the array. In this case, the
example goes one step further and shows accessing the array from left to right.

CHAPTER 2 ■ GROOVY BASICS 31

17. http://groovy.codehaus.org/JN1025-Arrays

18. http://codeguru.earthweb.com/java/tij/tij0053.shtml

10450_ch02.qxd 5/15/08 6:05 PM Page 31

http://groovy.codehaus.org/JN1025-Arrays
http://codeguru.earthweb.com/java/tij/tij0053.shtml

Maps

A Groovy map19 is an unordered collection of key/value pairs, where the key is unique,
just as in Java. It is an implementation of java.util.Map.20 By default, unless you specify
otherwise, a Groovy map is a java.util.LinkedHashMap.21 If you are familiar with LinkedHashMap
maps, you know that they are ordered by insert.

If you need a map other than a LinkedHashMap, you can create any type of map by
instantiating it; for example, def aTreeMap = new TreeMap(). In general, we encourage
you just to think of it as a regular map.

Listing 2-29 illustrates creating maps and common usages.

Listing 2-29. Creating and Using Maps

01 def emptyMap = [:]

02 // map.class returns null, use getClass()

03 println emptyMap.getClass().name //java.util.LinkedHashMap

04 println emptyMap.size() // 0

05

06 def todos = ['a':'Write the map section', 'b':'Write the set section']

07 println todos.size() // 2

08 println todos["a"] // Write the map section

09 println todos."a" // Write the map section

10 println todos.a // Write the map section

11 println todos.getAt("b") // Write the set section

12 println todos.get("b") // Write the set section

13 println todos.get("c", "unknown") // unknown, Notice "c" wasn't defined

14 // and now it is

15 println todos // ["a":"Write the map section", "b":"Write the set section",

16 // "c":"unknown"]

17

18 todos.d = "Write the ranges section"

19 println todos.d // Write the ranges section

20 todos.put('e', 'Write the strings section')

21 println todos.e // Write the strings section

22 todos.putAt 'f', 'Write the closure section' // Notice () are optional

23 println todos.f // Write the closure section

24 todos[null] = 'Nothing Set' // Using null as a key

CHAPTER 2 ■ GROOVY BASICS32

19. http://groovy.codehaus.org/JN1035-Maps

20. http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html

21. http://java.sun.com/j2se/1.4.2/docs/api/java/util/LinkedHashMap.html

10450_ch02.qxd 5/15/08 6:05 PM Page 32

http://groovy.codehaus.org/JN1035-Maps
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/LinkedHashMap.html

25 println todos[null] // Nothing set

26

27 // Print each key/value pair on a separate line

28 // Note: it is an implicit iterator

29 todos.each { println "Key: ${it.key}, Value: ${it.value}" }

30 // Print each key/value pair on a separate line with index

31 todos.eachWithIndex { it, i -> println "${i} Key: ${it.key},

32 Value: ${it.value}" }

33 // Print the value set

34 todos.values().each { println it }

In line 1, an empty map is created by assigning a property the value [:]. Compare the
creation of an empty list to the creation of an empty map. An empty list is created using
the value []; an empty map is created using the value [:]. You can see from line 2 that the
map is implemented as a java.util.LinkedHashMap.

Line 6 illustrates defining a map with multiple entries. When using the square
bracket notation, the colon separates the key from the value. Line 6 is [key1: value1,
key2 : value2].

Lines 8–16 show several different techniques for accessing the map. The most interest-
ing is line 10. It shows using the key as a property to the map. You can use this technique to
read an item from the map and put an item into the map.

Lines 18–25 show several different techniques for putting items into the map. You can
see that they mirror the techniques used on lines 8–16.

Lines 29, 31, 32, and 34 illustrate iterating. Line 29 iterates over the map to print the
key and value. Lines 31 and 32 iterate with an index. Line 34 iterates over the map values.

Regular Expressions
Regular expressions, sometimes referred to regex, are a technique for identifying and
manipulating text using a pattern notation.22 They have been popular in scripting lan-
guages such as Unix shell scripting and Perl for a long time, and were added to Java in
version 1.4.23

■Note Regular expressions are extremely robust and powerful. This section discusses Groovy’s support of
regular expressions. For a full exploration of regular expressions, refer to a book devoted to that subject. You
can also find many useful tutorials on the Internet.24

CHAPTER 2 ■ GROOVY BASICS 33

22. http://groovy.codehaus.org/Regular+Expressions

23. http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

24. http://groovy.codehaus.org/Tutorial+4+-+Regular+expressions+basics and http://groovy.
codehaus.org/Tutorial+5+-+Capturing+regex+groups, for example

10450_ch02.qxd 5/15/08 6:05 PM Page 33

http://groovy.codehaus.org/Regular+Expressions
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://groovy.codehaus.org/Tutorial+4+-+Regular+expressions+basics
http://groovy

A regular expression is a sequence of characters to create a pattern that is applied to
a string. The pattern is defined by a pattern language. Table 2-1 shows some of the more
common patterns in the Java regular expression language.25

Table 2-1. Summary of Regular-Expression Constructs

Construct Matches

Characters

x The character x

\\ The backslash character

\t The tab character (\u0009)

\n The newline (line feed) character (\u000A)

\r The carriage-return character (\u000D)

\f The form-feed character (\u000C)

\e The escape character (\u001B)

Character Classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z] (subtraction)

Predefined Character Classes

. Any character (may or may not match line terminators)

\d A digit: [0–9]

\D A nondigit: [^0–9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A nonword character: [^\w]

CHAPTER 2 ■ GROOVY BASICS34

25. For a complete list of regular expressions, see http://java.sun.com/j2se/1.4.2/docs/api/java/util/
regex/Pattern.html.

10450_ch02.qxd 5/15/08 6:05 PM Page 34

http://java.sun.com/j2se/1.4.2/docs/api/java/util

Construct Matches

Boundary Matchers

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A nonword boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final terminator, if any

\z The end of the input

Greedy Quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

Reluctant Quantifiers

X?? X, once or not at all

X*? X, zero or more times

X+? X, one or more times

X{n}? X, exactly n times

X{n,}? X, at least n times

X{n,m}? X, at least n but not more than m times

Possessive Quantifiers

X?+ X, once or not at all

X*+ X, zero or more times

X++ X, one or more times

X{n}+ X, exactly n times

X{n,}+ X, at least n times

X{n,m}+ X, at least n but not more than m times

Logical Operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

CHAPTER 2 ■ GROOVY BASICS 35

10450_ch02.qxd 5/15/08 6:05 PM Page 35

Groovy Regular Expression Operators

Groovy leverages Java’s regular expression support and makes it easier through Groovy’s
string support. Groovy also adds three convenience operators:

• The match operator (==~)

• The find operator (=~)

• The pattern operator (~string)

Match Operator

The match operator (==~) returns true if the regular expression exactly matches the sub-
ject. Listing 2-30 shows some examples of using the match operator.

Listing 2-30. Using the Match Operator

01 assert "abc" ==~ 'abc'

02 assert "abc" ==~ /abc/

03 assert "abcabc ==~ /abc/ // Fails – not an exact match

04 assert "abc" ==~ /^a.c/ // Starts with a, 1 char, ends with c

05 assert "abc" ==~ /^a../ // Starts with a, 2 chars

06 assert "abc" ==~ /.*c$/ // One or more chars end with c

07 assert "abc" ==~ ".*c\$" // Slashy string is better

Line 3 shows that unless it is an exact match, the match will fail (return false). Lines
4–6 illustrate a couple of ways of defining a regular expression that matches the subject.
Line 7 is another example of defining the regular expression on line 6, except it uses dou-
ble quotes instead of slashes. The important thing to note is that using the double quotes
requires the $ to be escaped using a (==~)backslash.

Find Operator

The find operator (=~) returns a java.util.regex.Matcher.26 A matcher is a component that
applies a regular expression to a string. The result is a two-dimensional array of matches.
The first dimension contains the match, and the second dimension contains the groups
within the match. A group is the defined within the regular expression using parentheses.
In the example in Listing 2-31, the regular expression defines four groups. When the
expression is applied to a string, the groups are individually accessible. This is useful for
identifying and accessing portions of a string.

CHAPTER 2 ■ GROOVY BASICS36

26. http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Matcher.html

10450_ch02.qxd 5/15/08 6:05 PM Page 36

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Matcher.html

Listing 2-31. Using the Find Operator

01 def winpath=/C:\windows\system32\somedir/

02 def matcher = winpath =~ /(\w{1}):\\(\w+)\\(\w+)\\(\w+)/

03 println matcher

04 println matcher[0] // ["C:\windows\system32\somedir", "C", "windows",

05 // "system32", "somedir"]

06 println matcher[0][1] // C

07 def newPath = matcher.replaceFirst('/etc/bin/')

08 println newPath // /etc/bin

java.util.regex.Matcher[pattern=(\w{1}):\\(\w+)\\(\w+)\\(\w+) region=0,27

lastmatch=]

["C:\windows\system32\somedir", "C", "windows", "system32", "somedir"]

C

/etc/bin/

Line 1 defines winpath as a directory path string. Line 2 applies a regular expression to
the winpath variable using the find operator and returns a java.util.regex.Matcher. The regu-
lar expression is set up as a series of group-capturing expressions. Referring to Table 2-1, you
can see that \w is a word character and the + means one or more. When the regular expres-
sion matches the variable, the individual group values are available from the matcher. When
line 3 is invoked, you can see that matcher is in fact a java.util.regex.Matcher and the pattern
is matching. Lines 4 and 5 illustrate printing the contents of the first match using an index
notation. In this example, there will be only one match. If winpath had been a multiline string
with multiple directory paths, then matcher would have had multiple matches. Line 6 shows
accessing the first group within the match using a second index.

Now that you have a match, you can start applying java.util.regex.Matcher methods.
Line 7 is an example of replacing the first match with a new value. When you replace a
match, it returns a new string.

Pattern Operator

The pattern operator (~string) transforms a string into a pattern (java.util.regex.Pattern27),
which is a compiled regular expression. When you are going to use a regular expression over
and over, you should consider creating a pattern. Reusing a pattern will give the application
a performance boost.28 Listing 2-32 illustrates creating and using a pattern.

CHAPTER 2 ■ GROOVY BASICS 37

27. http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

28. Section 3.5.4, Groovy in Action by Dierk Koenig et al. (Manning, 2007).

10450_ch02.qxd 5/15/08 6:05 PM Page 37

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

Listing 2-32. Creating and Using a Pattern

01 def saying = """Now is the time for all good men (and women) to come to the aid

02 of their country"""

03 def pattern = ~/(\w+en)/

04 def matcher = pattern.matcher(saying)

05 def count = matcher.getCount()

06 println "Matches = ${count}"

07 for(i in 0..<count) {

08 println matcher[i]

09 }

Matches = 2

["men", "men"]

["women", "women"]

Lines 1 and 2 assign a famous quote to the saying variable. Line 3 defines a regular
expression pattern that should find the words that end in en, such as men and women.

■Caution Notice the space between the = and ~ for the pattern operator in Listing 2-32. Without the
space, it would be the find operator.

Line 4 applies the pattern to the saying and returns a matcher that contains the results.
Lines 5 and 6 print the number of matches. Lines 7–9 loop through and print the matches.

Common Uses of Regular Expressions

By now, you are starting to get an idea of how regular expressions work. Now let’s see how
they can be applied in real-world scenarios. It is common for web applications to allow
the user to enter personal information such as a telephone number. Two common tasks
are to check that the phone number is a valid format and to parse the phone number into
the individual parts. Listing 2-33 is an example of using the match operator to validate
a phone number.

Listing 2-33. Validating a Phone Number

def phoneValidation = /^[01]?\s*[\(\.-]?(\d{3})[\)\.-]?\s*(\d{3})[\.-](\d{4})$/

assert '(800)555-1212' ==~ phoneValidation

assert '1(800) 555-1212' ==~ phoneValidation

assert '1-800-555-1212' ==~ phoneValidation

assert '1.800.555.1212' ==~ phoneValidation

CHAPTER 2 ■ GROOVY BASICS38

10450_ch02.qxd 5/15/08 6:05 PM Page 38

In this example, you see the same phone number in four different valid formats.
The regular expression to validate the phone number format is assigned to the variable
phoneValidation. The match operator is used to validate the phone numbers by applying
the regular expression to the phone number. If the phone number is valid, the match
operator returns true.

Another common task is parsing a phone number so that the values can be put into
a domain class. Listing 2-34 illustrates parsing the phone number into the individual parts
and loading it in the domain class.

Listing 2-34. Parsing the Phone Number

class Phone {

String areaCode

String exchange

String local

}

def phoneStr = '(800)555-1212'

def phoneRegex = ~/^[01]?\s*[\(\.-]?(\d{3})[\)\.-]?\s*(\d{3})[\.-](\d{4})$/

def matcher = phonePattern.matcher(phoneStr)

def phone = new Phone(

areaCode: matcher[0][1],

exchange: matcher[0][2],

local: matcher[0][3])

println "Original Phone Number: ${phoneStr}"

println """Parsed Phone Number\

\n\tArea Code = ${phone.areaCode}\

\n\tExchange = ${phone.exchange}\

\n\tLocal = ${phone.local}"""

In this example, the Phone object, the phone number to parse (phone1), and the phone
regular expression pattern (phoneRegex) are defined. Next, the phone pattern is applied to
the phone number to be parsed. The pattern is defined with groups, which allows the
regular expression to be used to parse the phone number into the individual parts. The
construction of the Phone object illustrates accessing the individual parts using the sec-
ond index. Lastly, we print out the phone number to prove that the parsing worked.

CHAPTER 2 ■ GROOVY BASICS 39

10450_ch02.qxd 5/15/08 6:05 PM Page 39

Operators
You use operators every day. They probably have become so familiar to you that you don’t
even think of them anymore. Common operators include = for assignment, + to add two
numbers, * to multiply two numbers, and ++ to increment a number. Of course, there are
many more, but you get the idea.

Operator Overloading

Operator overloading has been around for some time but absent from Java. Operator
overloading was omitted from Java because of the bad experiences people had in C++.
Groovy embraces operator overloading and makes it easy to define and use. An over-
loaded operator executes a method on object. Groovy has predefined the relationship
between the overloaded operator and the object method. Table 2-2 lists the Groovy oper-
ators and their corresponding methods. When an overloaded operator is encountered,
the corresponding method is invoked.

Table 2-2. Operator Overloading

Operator Method

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a ** b a.power(b)

a / b a.div(b)

a % b a.mod(b)

a | b a.or(b)

a & b a.and(b)

a ^ b a.xor(b)

a++ or ++a a.next()

a-- or --a a.previous()

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

a << b a.leftShift(b)

a >> b a.rightShift(b)

switch(a) { case(b) : } b.isCase(a)

~a a.bitwiseNegate()

-a a.negative()

+a a.positive()

CHAPTER 2 ■ GROOVY BASICS40

10450_ch02.qxd 5/15/08 6:05 PM Page 40

At first glance, you may not see the benefits of operator overloading. Groovy uses
operator overloading to create shortcuts that make Java friendlier. For example, adding
an object to a list in Java looks like this: myList.add(someObject). The corresponding
Groovy way of adding an object to a list is myList << someObject.

Operator overloading isn’t limited to the predefined instances that Groovy supplies;
you can add operator overloading to your Groovy classes by implementing the corre-
sponding method.

Specialized Operators

Groovy includes many of the standard operators found in other programming languages,
as well as operators that are specific to Groovy that enable it to be so powerful.

Spread Operator

The spread operator (*.) is a shorthand technique for invoking a method or closure on
a collection of objects. Listing 2-35 illustrates two ways of iterating over a list: first using
the collect() method and then using the spread operator.

Listing 2-35. Using the Spread Operator

class User {

String firstName

String lastName

def printFullName = {

println "${firstName} ${lastName}"

}

}

// Instantiate a User using the named parameters constructor

User chris = new User(firstName:"Chris", lastName: "Judd")

User joseph = new User(firstName:"Joseph", lastName: "Nusairat")

User jim = new User(firstName:"Jim", lastName: "Shingler")

def list = [chris,joseph,jim]

println "Using collect closure"

list.collect { println it.printFullName() }

println "\n\nUsing Spread Operator:"

list*.printFullName()

CHAPTER 2 ■ GROOVY BASICS 41

10450_ch02.qxd 5/15/08 6:05 PM Page 41

This example shows creating a list of User objects and using two different techniques
for printing the list. The first technique is using the collect() method to iterate over the
list, applying the items’ printFullName() closure. The second technique uses the spread
operator to iterate over the list of users, invoking the users’ printFullName() closure.

■Note Listing 2-35 includes a technique that we haven’t discussed yet: named parameters. One of the
neat things about Groovy is the ability to specify the property and value to be assigned as a parameter to
a constructor. Using the code in Listing 2-35 as an example, we can instantiate a User object and set the
firstName and lastName, just the lastName, or just the firstName without coding all of the different
constructors that would be required.

Elvis Operator

The Elvis operator (?:) is a shorthand version of the Java ternary operator.29 An example
of using the Java-style ternary operator is a == 1 ? "One" : "Not One". If a is equal to 1,
then "One" is returned; otherwise "Not One" is returned. It is literally a shorthand “if-then-
else.” As with most Java constructs, you can use the Java ternary operator in Groovy. In
addition to the Java ternary operator, you can use an even shorter shorthand notation in
Java: the Elvis operator. This can be very useful in defaulting values if they haven’t been
set already, meaning that they evaluate to null or false. Listing 2-36 illustrates using the
Java ternary and Elvis operators in Groovy.

Listing 2-36. Using the Elvis Operator

def firstName = user.firstName == null ? "unknown" : user.firstName // Java ternary

def firstName2 = user.firstName ?: "unknown" // Groovy Elvis

In both cases, if the user.firstName is null, then the firstName is set to "unknown". The
user.firstName portion of the Elvis operator example is known as the expression. If the
expression evaluates to false or null, then the value after the : is returned. The two lines
in the example are logically equivalent.

Safe Navigation/Dereference Operator

The safe navigation/dereference operator (?.) is used to avoid NullPointerExceptions, so
it is incredibly handy. Consider the situation where you have a User object and you want
to print the firstName. If the User object is null when you access the firstName property,

CHAPTER 2 ■ GROOVY BASICS42

29. http://www.jguru.com/faq/view.jsp?EID=1300747

10450_ch02.qxd 5/15/08 6:05 PM Page 42

http://www.jguru.com/faq/view.jsp?EID=1300747

you will get a NullPointerException. Listing 2-37 illustrates the Java way of safe derefer-
encing and using the Groovy safe navigation/dereference operator.

Listing 2-37. Using the Safe Navigation/Dereference Operator

User user

println user.firstName // Throws NullPointerException

// Adding a null check, the Java way

if (user != null) {

println "Java FirstName = ${user.firstName}"

}

// Null check the Groovy way

println "Groovy FirstName = ${user?.firstName}"

This example shows using the standard Java technique of checking for null before
accessing an object and then using the Groovy safe navigation/dereference operator to
accomplish the same thing.

Field Operator

In Chapter 1, you learned about properties on a class and how Groovy automatically
supplies a getter. You also learned that in the event that special logic is required, you
can provide your own getter.

While not recommended because it is a major violation of encapsulation, Groovy
provides a way to bypass the getter and access the underlying field directly. Listing 2-38
shows an example of using the field operator (.@).

Listing 2-38. Using the Field Operator

class Todo {

String name

def getName() {

println "Getting Name"

name

}

}

def todo = new Todo(name: "Jim")

println todo.name

println todo.@name

CHAPTER 2 ■ GROOVY BASICS 43

10450_ch02.qxd 5/15/08 6:05 PM Page 43

mailto:todo.@name

Getting Name

Jim

Jim

In this example, the first println uses the getter to access name, and the second println
bypasses the getter to access name directly.

Method Closure Operator

Earlier in the chapter, you learned about closures and how some of the Groovy functions
accept a closure as input. But what if you would like to pass a method around in the same
way that you can pass a closure? Groovy provides the method closure operator (.&) for
just this scenario. The method closure operator allows the method to be accessed and
passed around like a closure. Listing 2-39 illustrates using a method as a closure.

Listing 2-39. Using the Method Closure Operator

def list = ["Chris","Joseph","Jim"]

// each takes a closure

list.each { println it }

String printName(String name) {

println name

}

// & causes the method to be accessed as a closure

list.each(this.&printName)

Chris

Joseph

Jim

Chris

Joseph

Jim

This example creates a list of names and iterates through the list to print out the
names. You have seen this before. A printName() method is created that prints the name
parameter. Lastly and the main point of this example, the list is iterated over, executing
the printName() method as a closure.

CHAPTER 2 ■ GROOVY BASICS44

10450_ch02.qxd 5/15/08 6:05 PM Page 44

Now because this is a really simple example, you may be thinking, “Big deal.” Well
actually it is, especially if you are building a domain-specific language (DSL), which you
will learn more about in Chapter 3.

The method really invokes System.out.println. How did the Groovy team get
println to do that? The answer is that they used the method closure operator to assign
System.out.println to a global property, as in def println = System.out.&println().
That is extremely powerful. Using the method closure operator, you are able to expose
Java methods as closures.

Summary
The focus of this chapter was Groovy language basics. The goal was to teach you enough
Groovy to get you started with Grails. In this chapter, you created a simple program (script)
and compared it to what it would take to do the same thing in Java. Then you learned how
to turn the script into a Groovy class, compile it, and run it using Java.

Once you learned about Groovy scripts and classes, we took a quick look at the Groovy
Shell and Groovy Console. The shell and console are handy for writing and testing quick lit-
tle programs. With some basic Groovy tooling under your belt, it was time to start taking
a look at the Groovy language. Your journey into the Groovy language started with learning
about Groovy’s support of strings, closures and methods, and collections (lists, maps, sets,
arrays, and ranges). Next, you had a high-level overview of Groovy’s regular expression sup-
port. We covered the find (=~), match (==~), and pattern (~string) operators. Lastly, you
learned about operator overloading and specialized operators. They are a major source of
Groovy’s power.

This chapter is by no means a comprehensive study of Groovy. Groovy is a very broad
and deep topic. The goal was to give you enough Groovy knowledge to start building an
application and know where to look for more information. The next chapter will introduce
you to some of the Groovy frameworks and more advanced Groovy topics.

CHAPTER 2 ■ GROOVY BASICS 45

10450_ch02.qxd 5/15/08 6:05 PM Page 45

10450_ch02.qxd 5/15/08 6:05 PM Page 46

More Advanced Groovy

Chapters 1 and 2 offered a glimpse into the power and capabilities of Groovy by provid-
ing a basic understanding of its language features and tools. But there is far more to know
about Groovy. For example, Groovy provides an ideal framework for creating unit tests. It
makes working with XML simple and straightforward, and it includes a great framework
for templating text. Finally, Groovy has a meta programming model that you can use to do
amazing things, such as enabling the creation of domain-specific languages and adding
methods and functionality to the Java API classes, including classes that are marked as
final, which prevents them from being extended in Java.

This chapter covers a variety of unrelated or loosely related advanced Groovy topics. It
starts off by showing you how to use Groovy to write and execute unit tests, then it compares
how to process XML documents with both Java and Groovy. The next section explains how
you can use Groovy’s templating to generate e-mails. The chapter concludes with three meta
programming topics: implementing Expando classes, extending classes with Meta Object
Protocol (MOP), and creating domain-specific languages (DSLs).

Groovy Unit Testing
One of Groovy’s best value propositions is unit testing. Using Groovy to unit-test Groovy
or Java code can make the code easier to read and maintain. Unit testing is a common
way to introduce Groovy to an organization, because it doesn’t affect the production run-
time. Once developers and managers get comfortable with Groovy in a testing capacity,
they eventually begin using it in production.

Unit testing is so fundamental to Groovy that it’s built right in. You don’t need to down-
load a separate framework. Groovy already includes and extends JUnit,1 which is a popular
Java unit-testing framework. The primary extension is groovy.util.GroovyTestCase, which
inherits from junit.framework.TestCase and adds the additional assert methods found in
Table 3-1.

47

C H A P T E R 3

1. http://www.junit.org

10450_ch03.qxd 5/19/08 10:25 PM Page 47

http://www.junit.org

Table 3-1. GroovyTestCase Assert Methods

Assert Method Description

assertArrayEquals Asserts two arrays are equal and contain the same values

assertContains Asserts an array of characters contains the given characters or an array
of ints contains a given int

assertEquals Asserts two Objects or two Strings are equal

assertInspect Asserts the value of the inspect() method

assertLength Asserts the length of char, int, or Object arrays

assertScript Asserts script runs without any exceptions being thrown

assertToString Asserts the value of toString()

JUnit (and therefore Groovy unit testing) works by creating a class that inherits
from TestCase or one of its descendants. GroovyTestCase is the appropriate class to extend
for unit testing in Groovy. Notice that GroovyTestCase is found in the groovy.util pack-
age, so it is implicitly available and doesn’t even require any imports. Tests can then be
added by creating methods that have a name that begins with test and is followed by
something descriptive about the test. For example, you could use testAlphaRanges for
a test that validates the Groovy language feature of ranges. These test methods should
take no parameters and return void. Unlike with JUnit tests written in Java, these meth-
ods don’t have to declare exceptions that could be thrown, because Groovy naturally
converts all checked exceptions into unchecked exceptions. This makes tests more
readable than the equivalent Java implications.

Unit tests often require objects to be put into a known state. In addition, tests should
be good test-harness citizens and clean up after themselves. Like JUnit tests, all Groovy
tests can override the setUp and tearDown methods.

Unit tests are also a great way to learn new frameworks, libraries, and languages
such as Groovy. You can use unit tests to validate your understanding of how they work.
Listing 3-1 is a unit test used to validate some assumptions about Groovy ranges, includ-
ing whether a range from 'a'..'z' contains uppercase letters and whether ranges can
be concatenated together.

Listing 3-1. Example Unit Test That Validates Assumptions About Groovy Ranges

01 class RangeTest extends GroovyTestCase {

02

03 def lowerCaseRange = 'a'..'z'

04 def upperCaseRange = 'A'..'Z'

05

06 void testLowerCaseRange() {

CHAPTER 3 ■ MORE ADVANCED GROOVY48

10450_ch03.qxd 5/19/08 10:25 PM Page 48

07 assert 26 == lowerCaseRange.size()

08 assertTrue(lowerCaseRange.contains('b'))

09 assertFalse(lowerCaseRange.contains('B'))

10 }

11

12 void testUpperCaseRange() {

13 assert 26 == upperCaseRange.size()

14 assertTrue(upperCaseRange.contains('B'))

15 assertFalse(upperCaseRange.contains('b'))

16 }

17

18 void testAlphaRange() {

19 def alphaRange = lowerCaseRange + upperCaseRange

20 assert 52 == alphaRange.size()

21 assert alphaRange.contains('b')

22 assert alphaRange.contains('B')

23 }

24 }

Listing 3-1 shows a unit test that extends from GroovyTestCase and contains two vari-
ables that include a range of lowercase letters on line 3 and a range of uppercase letters on
line 4. The test case also contains three tests. The first test, shown on lines 6–10, asserts that
the range has a size of 26, representing each of the letters in lowercase. It also asserts that
a lowercase 'b' is in the range but that an uppercase 'B' is not. The second test, shown on
lines 12–16, is basically the same test but uses the uppercase range. The third test, on the
other hand, validates that the two ranges can be concatenated together to produce a new
range that includes both. Therefore, the new range is twice the size and includes both the
lowercase 'b' and the uppercase 'B'.

Running a Groovy unit test is just like running a script. To run this test, execute the
following:

> groovy RangeTest

Because a JUnit test runner is built into Groovy, the results of the tests are printed to
standard out. The results identify how many tests ran, how many failed, and how many
errors occurred. Failures indicate how many tests did not pass the assertions, and errors
indicate unexpected occurrences such as exceptions. In addition, because GroovyTestCase
extends JUnit, you can easily integrate the Groovy tests into automated test harnesses
such as Apache Ant2 and Apache Maven3 builds so they can be run continually.

CHAPTER 3 ■ MORE ADVANCED GROOVY 49

2. http://ant.apache.org

3. http://maven.apache.org

10450_ch03.qxd 5/19/08 10:25 PM Page 49

http://ant.apache.org
http://maven.apache.org

Working with XML
Extensible Markup Language (XML)4 is a general-purpose markup language commonly
used in enterprise applications to persist or share data. Historically, creating and con-
suming XML documents has been easier than working with other types of formats,
because XML is text-based, follows a standard, is in an easily parsable format, and fea-
tures many existing frameworks and libraries to support reading and writing documents
for many different programming languages and platforms. Most of these frameworks,
however, are based on the World Wide Web Consortium’s (W3C’s)5 Document Object
Model (DOM),6 which can cause the code that manipulates XML documents to become
difficult to write and read. Due to the popularity and complexity of working with XML,
Groovy includes a framework that uses XML in a natural way. The next section demon-
strates how complicated it is to write simple XML with standard Java code, then shows
you how to process XML in the simple and elegant Groovy way.

Writing XML with Java

Generating a simple XML document like the one found in Listing 3-2 in Java is difficult,
time consuming, and a challenge to read and maintain.

Listing 3-2. Simple XML Output for To-Dos

<todos>

<todo id="1">

<name>Buy Beginning Groovy and Grails</name>

<note>Purchase book from Amazon.com for all co-workers.</note>

</todo>

</todos>

Listing 3-3 shows the minimum Java code necessary to generate the XML shown in
Listing 3-2.

Listing 3-3. Java Code to Generate the Simple To-Do XML Found in Listing 3-2

import org.w3c.dom.Document;

import org.w3c.dom.Element;

CHAPTER 3 ■ MORE ADVANCED GROOVY50

4. http://www.w3.org/XML/

5. http://www.w3c.org

6. http://www.w3.org/DOM/

10450_ch03.qxd 5/19/08 10:25 PM Page 50

http://www.w3.org/XML
http://www.w3c.org
http://www.w3.org/DOM

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Source;

import javax.xml.transform.Result;

import javax.xml.transform.TransformerException;

import javax.xml.transform.dom.DOMSource;

/**

* Example of generating simple XML in Java.

*/

public class GenerateXML {

public static void main (String[] args)

throws ParserConfigurationException, TransformerException {

DocumentBuilder builder =

DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document doc = builder.newDocument();

Element todos = doc.createElement("todos");

doc.appendChild(todos);

Element task = doc.createElement("todo");

task.setAttribute("id", "1");

todos.appendChild(task);

Element name = doc.createElement("name");

name.setTextContent("Buy Beginning Groovy and Grails");

task.appendChild(name);

Element note = doc.createElement("note");

note.setTextContent("Purchase book from Amazon.com for all co-workers.");

task.appendChild(note);

// generate pretty printed XML document

TransformerFactory tranFactory = TransformerFactory.newInstance();

Transformer transformer = tranFactory.newTransformer();

CHAPTER 3 ■ MORE ADVANCED GROOVY 51

10450_ch03.qxd 5/19/08 10:25 PM Page 51

transformer.setOutputProperty(OutputKeys.INDENT, "yes");

transformer.setOutputProperty(

"{http://xml.apache.org/xslt}indent-amount", "2");

Source src = new DOMSource(doc);

Result dest = new StreamResult(System.out);

transformer.transform(src, dest);

}

}

Notice how difficult it is to read Listing 3-3. It begins by using DocumentBuilderFactory
to create a new DocumentBuilder. With DocumentBuilder, the newDocument() factory method
is called to create a new Document. Elements are created using Document’s factory methods,
configured by adding attributes or text content, and then finally appended to their parent
element. Notice how difficult it is to follow the natural tree structure of the XML document
by looking at the Java code. This is partly because most elements require three lines of
code to create, configure, and append the element to its parent.

Finally, outputting the XML into a human-readable nested format isn’t straightforward.
Much like creating the document itself, it begins by getting a TransformerFactory instance
and then using the newTransformer() factory method to create a Transformer. Then the
transformer output properties are configured to indent, and the indent amount is config-
ured. Notice that the indent amount isn’t even standard. It uses an Apache Xalan7–specific
configuration, which may not be completely portable. Ultimately, a source and result are
passed to the transformer to transform the source DOM into XML output.

Groovy Builders

Groovy simplifies generating XML by using the concept of builders, based on the Builder
design pattern from the Gang of Four.8 Groovy builders implement a concept of Groovy-
Markup, which is a combination of Groovy language features such as MOP (discussed
later in the chapter), closures, and the simplified map syntax to create nested tree-like
structures. Groovy includes five major builder implementations, as defined in Table 3-2.
They all use the same format and idioms, so knowing one builder pretty much means
you’ll be able to use them all.

CHAPTER 3 ■ MORE ADVANCED GROOVY52

7. http://xalan.apache.org/

8. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Boston, MA: Addison-Wesley Professional, 1994).

10450_ch03.qxd 5/19/08 10:25 PM Page 52

http://xml.apache.org/xslt
http://xalan.apache.org

Table 3-2. Groovy Builders

Name Description

AntBuilder Enables the script and execution of Apache Ant tasks

DOMBuilder Generates W3C DOMs

MarkupBuilder Generates XML and HTML

NodeBuilder Creates nested trees of objects for handling arbitrary data

SwingBuilder Creates Java Swing UIs (discussed in detail in Chapter 13)

In general, you start using a builder by creating an instance of the builder. Then you
call a named closure to create the root node, which could represent a root XML element,
a Swing component, or a specific builder-appropriate node. You add nodes by nesting
more named closures. This format makes it easy to read the hierarchical structures.

You add attributes by using Groovy’s map syntax to pass name-value pairs into the
named closures. Under the covers, MOP interprets the message passed to the object, usu-
ally to determine which method to invoke. When it realizes there is no method by that
name, it creates the associated node or attribute.

Writing XML with Groovy MarkupBuilder

As noted in Table 3-2, you use MarkupBuilder to create XML and HTML. Listing 3-4 shows
the Groovy code in action for creating the XML shown in Listing 3-2.

Listing 3-4. Groovy Code to Generate the Simple To-Do XML Found in Listing 3-2

01 def writer = new StringWriter()

02 def builder = new groovy.xml.MarkupBuilder(writer)

03 builder.setDoubleQuotes(true)

04 builder.todos {

05 todo (id:"1") {

06 name "Buy Beginning Groovy and Grails"

07 note "Purchase book from Amazon.com for all co-workers."

08 }

09 }

10

11 println writer.toString()

Looking at Listing 3-4, you can see how much easier it is to read than the Java equiva-
lent shown in Listing 3-3. The example begins by creating StringWriter, so the final XML
can be printed to system out on line 11. Then MarkupBuilder is created using StringWriter.

CHAPTER 3 ■ MORE ADVANCED GROOVY 53

10450_ch03.qxd 5/19/08 10:25 PM Page 53

By default, MarkupBuilder uses single quotes for attribute values, so line 3 changes the
quotes to double quotes to comply with the XML specification. Lines 4–9 actually build
the XML document using named closures and map syntax. You can easily see that todos
contains a todo with an id attribute of 1 and nested name and note elements.

Reading XML with XmlSlurper

Groovy makes reading XML documents equally as easy as writing XML documents.
Groovy includes the XmlSlurper class, which you can use to parse an XML document or
String and provide access to a GPathResult. With the GPathResult reference, you can use
XPath9-like syntax to access different elements in the document.

Listing 3-5 shows how to use XmlSlurper and GPath to interrogate a todos XML document.

Listing 3-5. Reading XML in Groovy

01 def todos = new XmlSlurper().parse('todos.xml')

02 assert 3 == todos.todo.size()

03 assert "Buy Beginning Groovy and Grails" == todos.todo[0].name.text()

04 assert "1" == todos.todo[0].@id.text()

Listing 3-5 begins by using XmlSlurper to parse a todos.xml file containing three todo
items. Line 2 asserts there are three todos in the document. Line 3 shows how to access the
value of an element, while line 4 shows how to access the value of an attribute using @.

Generating Text with Templates
Many web applications generate text for e-mails, reports, XML, and even HTML. Embed-
ding this text in code can make it difficult for a designer or business person to maintain
or manage. A better method is to store the static portion externally as a template file and
process the template when the dynamic portions of the template are known.

As shown in Table 3-3, Groovy includes three template engines to make generating
text easier.

CHAPTER 3 ■ MORE ADVANCED GROOVY54

9. http://www.w3.org/TR/xpath

10450_ch03.qxd 5/19/08 10:25 PM Page 54

mailto:0].@id.text
http://www.w3.org/TR/xpath

Table 3-3. Groovy Template Engines

Name Description

SimpleTemplateEngine Basic templating that uses Groovy expressions as well as JavaServer
Pages (JSP) <% %> script and <%= %> expression syntax

GStringTemplateEngine Basically the same as SimpleTemplateEngine, except the template is
stored internally as a writable closure

XmlTemplateEngine Optimized for generating XML by using an internal DOM

The SimpleTemplateEngine usually is appropriate for most templating situations.
Listing 3-6 shows an HTML e-mail template that we’ll use in Chapter 11 for sending
e-mail during a nightly batch process.

Listing 3-6. HTML E-mail Template Found in nightlyReportsEmail.gtpl

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>

Collab-Todo Nightly Report for

${String.format('%tA %<tB %<te %<tY', date)}

</title>

</head>

<body bgcolor="#FFFFFF" style="margin:0;padding:0;">

<div style="padding: 22px 20px 40px 20px;background-color:#FFFFFF;">

<table width="568" border="0" cellspacing="0" cellpadding="1"

bgcolor="#FFFFFF" align="center">

<tr>

<td>

Dear ${user?.firstName} ${user?.lastName},

<p />

Please find your attached nightly report for

${String.format('%tA %<tB %<te %<tY', date)}.

</td>

</tr>

</table>

<!-- static HTML left out for brevity -->

</div>

</body>

</html>

CHAPTER 3 ■ MORE ADVANCED GROOVY 55

10450_ch03.qxd 5/19/08 10:25 PM Page 55

The template in Listing 3-6 is mostly HTML with a couple of Groovy expressions
thrown in for the dynamic portions of the e-mail, such as formatting the date and user’s
name. The e-mail produces the image shown in Figure 3-1.

Figure 3-1. HTML e-mail

To process the template, you create an instance of a template engine and use the
overloaded createTemplate() method, passing it a File, Reader, URL, or String containing
the template text to create a template. Now with the template loaded and parsed, you call
the make() method, passing it a map that binds with the variables in the template that are
based on the names in the map. Listing 3-7 shows what the code that generates the
e-mail in Figure 3-1 looks like.

Listing 3-7. E-mail Template-Processing Code

01 import groovy.text.SimpleTemplateEngine

02

03 /**

04 * Simple User Groovy Bean.

05 */

06 class User {

07 String firstName;

08 String lastName;

09 }

10

11 def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")

12 def binding = [

13 "user": new User(firstName: "Christopher", lastName: "Judd"),

14 "date": new Date()

15]

16 def engine = new SimpleTemplateEngine()

17 def email = engine.createTemplate(emailTemplate).make(binding)

18 def body = email.toString()

19

20 println body

CHAPTER 3 ■ MORE ADVANCED GROOVY56

10450_ch03.qxd 5/19/08 10:25 PM Page 56

Listing 3–7 begins by importing the SimpleTemplateEngine on line 1 so you have
access to it on line 16. Lines 6–9 declare a simple User GroovyBean. The template is
loaded from the nightlyReportsEmail.gtpl file found on the classpath on line 11. It
contains the template text found in Listing 3-6. Lines 12–15 create the map containing
the passed user and date data, which will be bound to the template when the template
is processed. SimpleTemplateEngine, created on line 16, is used on line 17 to create and
process the template.

Expandos
There are times in an application when you need an object to hold data or behaviors, but
it is not used enough to warrant creating an entire class definition for it. For example, the
User GroovyBean from Listing 3-7 is used simply to pass data to the template engine; it
provides no other value, so it’s a great candidate for an Expando object.

The Expando class is found in the groovy.util package and is a dynamically expand-
able bean, meaning you can add properties or closures to it at runtime. Combine this
with Groovy’s duck typing, and Expandos are also a great way to implement mock objects
during unit testing.

■Note Duck typing refers to the concept that if it walks like a duck and talks like a duck, it must be
a duck. In Groovy speak, if an object has properties and methods similar to another object, the two objects
must be of the same type.

The best way to understand Expandos is to see them in action. Listing 3-8 shows code
that creates the User GroovyBean from Listing 3-7 using Expandos rather than a concrete
class.

Listing 3-8. Alternative to the User GroovyBean

01 def user = new Expando()

02

03 user.firstName = 'Christopher'

04 user.lastName = 'Judd'

05

06 user.greeting = { greeting ->

07 "${greeting} ${firstName} ${lastName}"

08 }

09

10 assert user.greeting("Hello") == 'Hello Christopher Judd'

CHAPTER 3 ■ MORE ADVANCED GROOVY 57

10450_ch03.qxd 5/19/08 10:25 PM Page 57

Listing 3-8 uses an Expando as a replacement for a concrete GroovyBean class. On line 1,
a new instance of the Expando is created. On lines 3 and 4, the firstName and lastName
properties are added to the object dynamically and assigned values. Properties are not
the only things that you can add. You can also add behaviors using closures. Lines 6–8
create and assign a closure to greeting that concatenates the greeting parameter with the
properties for the first and last names. Finally, line 10 executes greeting.

You can also initialize Expandos with properties using the overloaded constructor that
takes a map. Listing 3-9 uses this technique to reimplement the template example found
in Listing 3-7.

Listing 3-9. Template Example Using Expandos Instead of User GroovyBean

import groovy.text.SimpleTemplateEngine

def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")

def binding = [

"user": new Expando([firstName: 'Christopher', lastName:'Judd']),

"date": new Date()

]

def engine = new SimpleTemplateEngine()

def template = engine.createTemplate(emailTemplate).make(binding)

def body = template.toString()

println body

Notice that Listing 3-9 reduces the amount of code and increases the readability of
the earlier template example by replacing the User class definition with Expando, which
contains the firstName and lastName properties.

Meta Object Protocol
Another important concept to Groovy and Grails is Meta Object Protocol (MOP). This
protocol enables you to add properties and behaviors to existing classes, much like the
Expando class discussed in the previous section. The capability of MOP to extend classes
doesn’t just exist for classes you write or Groovy classes. MOP enables you to add func-
tionality to the Java API, including classes such as java.lang.String, which is marked as
final to prevent standard Java classes from extending it and adding functionality. This is
how the Groovy JDK10 provides more Groovy idiomatic behavior to the standard Java
classes. You will learn in Chapter 6 how Grails uses this technique to add amazing persist-
ence features to your domain classes.

CHAPTER 3 ■ MORE ADVANCED GROOVY58

10. http://groovy.codehaus.org/groovy-jdk/

10450_ch03.qxd 5/19/08 10:25 PM Page 58

http://groovy.codehaus.org/groovy-jdk

■Note An in-depth explanation of the entire MOP and dispatch mechanism is beyond the scope of a book
aimed toward beginners. However, this section provides a brief introduction to the topic, so you can under-
stand how parts of the Grails framework might be implemented.

In Groovy, all classes—including all Java classes—have a property of metaClass of type
groovy.lang.MetaClass, similar to how all Java classes have a property of class of type
java.lang.Class. The groovy.lang.MetaClass interface is similar to the Expando object in
that you can add behavior at runtime. During the dispatching of a message to an object,
the MetaClass helps to determine which behavior should be invoked. In addition, you can
use the MetaClass to provide behavior if the class doesn’t implement the specific behavior
requested. This is how the builders discussed earlier in the chapter work. When you add
closures to the builder, MetaClass interprets this as a call to a missing method and provides
the specific builder functionality. For example, it might add an XML element to the
enclosing parent element.

In the previous template examples, a template URL was found for the template file
on the classpath using the following line, which by now may seem a little more like Java
than Groovy:

def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")

Listing 3-10 shows how MOP could make this a little more Groovy by adding the
getResourceAsText() method to java.lang.Class, which actually loads the file and gets the
contents of the file as text rather than just the URL to the file.

Listing 3-10. Adding the getResourceAsText() Method to java.lang.Class

01 import groovy.text.SimpleTemplateEngine

02

03 Class.metaClass.getResourceAsText = { resource ->

04 this.class.getResourceAsStream(resource).getText()

05 }

06

07 def emailTemplate = this.class.getResourceAsText('nightlyReportsEmail.gtpl')

08 def binding = [

09 "user": new Expando([firstName: 'Christopher', lastName:'Judd']),

10 "date": new Date()]

11 def engine = new SimpleTemplateEngine()

12 def template = engine.createTemplate(emailTemplate).make(binding)

13 def body = template.toString()

14

15 println body

CHAPTER 3 ■ MORE ADVANCED GROOVY 59

10450_ch03.qxd 5/19/08 10:25 PM Page 59

Notice how line 7 expresses much more explicitly that it is loading the template as text
and not as a URL. This is accomplished by extending the final java.lang.Class on lines 3–5
by accessing the metaClass property and adding the getResourceAsText() method that
takes a parameter of resource, which is the name of a file on the classpath. The imple-
mentation of this method found on line 4 uses the getResourceAsStream() technique to
load a file as a stream. This is generally safer than using a URL, because not every-
thing is easily addressable with a URL. The closure then finishes by using the getText()
method, which Groovy includes in the Groovy JDK on all java.io.InputStreams by means
of MOP. Finally, line 7 shows what a call to the getResourceAsText() method would look
like on java.lang.Class.

There are additional ways in which you might want to do the same thing and make
it a little more expressive. Listing 3-11 shows another implementation of doing the same
thing by adding behavior to java.lang.String, which is also a class marked as final.

Listing 3-11. Adding the fileAsString() Method to java.lang.String

01 String.metaClass.fileAsString = {

02 this.class.getResourceAsStream(delegate).getText()

03 }

04

05 println 'nightlyReportsEmail.gtpl'.fileAsString()

Listing 3-11 begins by adding the fileAsString() method to the metaClass property
of the java.lang.String class, similar to the previous example. However, it uses a delegate

variable instead of a passed-in parameter. The delegate is a reference to the object instance
of which the method was called, which in this case would be the String containing the file
name to be loaded. Notice how nicely line 5 reads. It is almost like reading an English sen-
tence. The next section continues with a technique for making code easier to read.

Domain-Specific Languages
With the realization that code is read more frequently than it is written and the popular-
ity of more expressive and flexible languages such as Groovy, domain-specific languages
(DSLs)—languages written to solve a problem using the particular problem’s vernacu-
lar—are becoming increasingly popular.

For example, using Groovy’s optional parameters and MOP, you can turn this code
that only a programmer can love:

println this.class.getResourceAsStream('readme.txt').getText()

into:

write 'readme.txt'.contents()

CHAPTER 3 ■ MORE ADVANCED GROOVY60

10450_ch03.qxd 5/19/08 10:25 PM Page 60

Notice that with the second option, even a nonprogrammer has a chance of under-
stating the intent of the code.

Listing 3-12 shows how to implement this simple DSL for writing files.

Listing 3-12. Implementation of a Simple DSL

01 String.metaClass.contents = {

02 this.class.getResourceAsStream(delegate).getText()

03 }

04

05 def write = { file ->

06 println file

07 }

08

09 write 'readme.txt'.contents()

Lines 1–3 use the same metaprogramming implementation from the previous section to
add a contents closure to the String class. The contents closure loads a file from the classpath
as text based on the value of the String. Lines 5–7 implement a closure named write that
simply does a println on whatever is passed as a parameter. This ultimately enables line 9 to
read like a sentence when the optional parentheses for the write call are not included.

Summary
Combined with the Groovy topics from the previous chapters, the Advanced Groovy
topics in this chapter—such as unit testing, XML processing, templates, Expandos, and
meta-programming—have prepared you for developing web-based applications using
the Groovy-based Grails framework that is the focus of the remainder of the book.

■Note You can explore many other advanced topics in Groovy. To learn more, check out the Groovy docu-
mentation11 or Groovy in Action12 by Dierk Koenig.

CHAPTER 3 ■ MORE ADVANCED GROOVY 61

11. http://groovy.codehaus.org/Documentation

12. Dierk Koenig with Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet, Groovy in Action
(Greenwich, CT: Manning Publications, 2007), http://www.manning.com/koenig/.

10450_ch03.qxd 5/19/08 10:25 PM Page 61

http://groovy.codehaus.org/Documentation
http://www.manning.com/koenig

10450_ch03.qxd 5/19/08 10:25 PM Page 62

Introduction to Grails

Let’s face it: developing web applications is hard. This problem has been exacerbated in
today’s environment, where applications deemed to fall into the Web 2.0 category involve
lots of technologies, such as HyperText Markup Language (HTML), Cascading Style Sheets
(CSS), Asynchronous JavaScript and XML (Ajax), XML, web services, Java, and databases.
Then on top of the technologies sit lots of open source framework choices like model-
view-controller (MVC) frameworks and Ajax frameworks. To make matters worse, while
the complexity of building applications continues to grow, expected turnaround times
continue to shrink.

In recent years, the Java community has tried solving these issues by building appli-
cations using Java Platform, Enterprise Edition (Java EE) and its predecessor, Java 2
Platform, Enterprise Edition (J2EE). While these platforms have proven to be scalable
and robust, they don’t allow for rapid agile development. Java EE has proven over and
over again that it was not written with an application level of abstraction but rather
with a much lower technical level. This is the reason that all the recent application
frameworks have been created and most notably the popularity in such frameworks as
Struts, Spring, and Hibernate. Furthermore, the development cycle of coding, compil-
ing, packaging, deploying, testing, and debugging takes entirely too long for any real
productivity and requires developers to switch context too frequently.

Enter Grails. Grails is an open source web development framework that packages
best practices such as convention over configuration and unit testing with the best-of-
the-best open source application frameworks such as Spring, Hibernate, and SiteMesh.
Together with the productivity of the Groovy scripting language, everything runs on top
of the robust Java and Java EE platforms.

In this chapter, you will learn about the features and open source frameworks included
with Grails. Then you’ll learn how to take advantage of Grails’ powerful scaffolding feature
to build your first Grails application.

63

C H A P T E R 4

10450_ch04.qxd 5/21/08 11:24 PM Page 63

What Is Grails?
Grails is not only an open source web framework for the Java platform, but a complete
development platform as well. Like most web frameworks, Grails is an MVC framework,
but it’s not your average Java MVC framework. Like other Java MVC frameworks, it does
have models referred to in Grails as domain classes that carry application data for display
by the view. However, unlike other MVC models, Grails domain classes are automatically
persistable and can even generate the underlying database schema. Like other MVC frame-
works, Grails controllers handle the requests and orchestrate services or other behavior.
Unlike most MVC frameworks, though, services and other classes can be automatically
injected using dependency injection based on naming conventions. In addition, Grails
controllers are request-scoped, which means a new instance is created for each request.
Finally, the default view for Grails is Groovy Server Pages (GSP) and typically renders HTML.
The view layer also includes a flexible layout, a templating feature, and simple tag
libraries.

Other Grails advantages include minimal configuration and a more agile develop-
ment cycle. Grails eliminates most of the standard MVC configuration and deployment
descriptors by using initiative conventions. Also, because Grails takes advantage of Groovy’s
dynamic language features, it is usually able to shorten the development cycle to just
coding, refreshing, testing, and debugging. This saves valuable development time and
makes development much more agile than with other Java MVC frameworks or Java EE.

Grails is also a complete development platform, including a web container, database,
build system, and test harness out of the box. This combination can reduce project startup
time and developer setup time to minutes rather than hours or days. With Grails, you typi-
cally don’t have to go find and download a bunch of server software or frameworks to get
started. You also don’t have to spend time creating or maintaining complicated build
scripts. Everything you need to get started comes bundled in one simple-to-install package.

■Note Grails is licensed under the flexible Apache 2.0 license and is hosted by the Codehaus open source
community.1

Grails has an impressive list of features and is able to provide so much by integration
of proven open source projects.

Grails Features

Grails really has too many features to mention them all. In this section, we’ll highlight
some of the more important ones.

CHAPTER 4 ■ INTRODUCTION TO GRAILS64

1. http://grails.codehaus.org, http://www.grails.org

10450_ch04.qxd 5/21/08 11:24 PM Page 64

http://grails.codehaus.org
http://www.grails.org

Convention Over Configuration

Rather than using lots of XML configuration files, Grails relies on conventions to make
application development easier and more productive. This also helps encourage the
Don’t Repeat Yourself (DRY) principle. Many of the conventions relate to its directory
structure, which we’ll discuss later in this chapter in the “Creating the Application” sec-
tion. However, Grails also includes a command-line interface that you use to generate
Grails artifacts and enforce the conventions.

Unit Testing

Unit testing is now recognized as a critical best practice to improving the quality of soft-
ware deliverables and enabling long-term maintainability of an application. Furthermore,
unit testing is even more important for applications written using dynamically typed lan-
guages such as Groovy, because identifying the effects of changes without the help of the
compiler and unit tests can be difficult. This is why unit testing is a major Grails conven-
tion. As you will learn later in this chapter in the “Implementing Integration Tests” section,
a unit test is created automatically when you use Grails to generate domain or controller
classes.

Grails separates its unit tests into two categories: unit and integration. Grails unit
tests are freestanding unit tests with no dependencies other than possibly mock objects.
Integration tests, on the other hand, have access to the entire Grails environment, includ-
ing the database.

Grails also includes functional testing for automating the web interface. In Chapter 5,
you’ll learn how to write functional tests.

Scaffolding

As you’ll experience in the second half of this chapter, Grails has a scaffolding framework
that generates applications with create, read, update, and delete (CRUD) functionality with
very little code, allowing you to focus on defining the Groovy domain by creating classes
with properties, behaviors, and constraints. At either runtime or development time, Grails
can generate the controller behavior and GSP views associated with the domain classes for
CRUD functionality. At the same time, it can even generate a database schema, including
tables for each of the domain classes.

Object Relational Mapping

Grails includes a powerful object relational mapping framework called Grails Object
Relational Mapping (GORM). Like most object-relational mapping (ORM) frameworks,
GORM can map objects to relational databases and represent relationships between
those objects, such as one-to-one or one-to-many. But what sets GORM apart from other

CHAPTER 4 ■ INTRODUCTION TO GRAILS 65

10450_ch04.qxd 5/21/08 11:24 PM Page 65

ORMs is the fact it is built for a dynamic language like Groovy. It injects the CRUD meth-
ods right into the class without having to implement them or inherit from a persistent
super classes. Once more, it is able to provide an ORM DSL for dynamic finder methods
and search criteria. You will learn more about GORM in Chapter 6.

Plug-Ins

Grails does not propose to have all the answers to every web development problem.
Instead, it provides a plug-in architecture and a community where you can find plug-ins
for things like security, Ajax, testing, searching, reporting, and web services. This plug-in
architecture makes it easy to add complicated functionality to your application. For
example, Chapter 7 will show how to use a CAPTCHA plug-in to ensure real people are
registering with your application.

Integrated Open Source

Grails does not suffer from the Not Invented Here (NIH) syndrome. Rather than reinvent
the wheel, it integrates the best of the best industry-standard and proven open source
frameworks, as you’ll see in the “Grails Architecture” section.

Groovy

Groovy is one of the pillars of Grails. As you learned in Chapters 1–3, Groovy is a powerful
and flexible open source language that stands on its own. However, its integration with
Java, dynamic scripting features, and simple syntax makes it a perfect complement to
Grails and provides the agile nature of the entire solution.

Spring Framework

Spring Framework2 (Spring) is best described by its creator Rod Johnson as providing an
application level of abstraction on top of the Java EE API. For example, rather than having
to deal with the details of handling transactions, Spring provides a means for declaring
transactions around regular Plain Old Java Objects (POJOs), so you can focus on imple-
menting business logic. In addition, because Spring brings Java EE features to POJOs,
you’re able to develop and test your application code outside a Java EE container, thereby
increasing productivity. Along with Hibernate, Spring was a major influence on the new
Enterprise JavaBeans (EJB) 3.0 spec, which attempts to simplify Java EE development.

Grails implicitly handles much of the Spring integration. However, in the “Injecting
into the Service” section of Chapter 6, you will learn how to explicitly configure and inte-
grate with Spring if you find it necessary.

CHAPTER 4 ■ INTRODUCTION TO GRAILS66

2. http://www.springframework.org

10450_ch04.qxd 5/21/08 11:24 PM Page 66

http://www.springframework.org

Hibernate

Hibernate3 is an object-relational persistence framework that provides the foundation for
GORM. It’s able to map complex domain classes written as POJOs or POGOs to relational
database tables, as well as map relationships between the tables. As mentioned in the
previous section, Hibernate had a big influence on the EJB 3.0 specification, specifically
the Java Persistence API (JPA). Hibernate is one of the many JBoss projects.

SiteMesh

SiteMesh4 is a web page layout framework that implements the decorator design pattern
for rendering HTML with constant components such as the header, footers, and naviga-
tion. It is one of the components found in the OpenSymphony suite and is hosted on the
OpenSymphony site.5 Grails hides most of the SiteMesh details from you as a developer,
but in Chapter 5, you’ll see how to create page layouts and other web components such
as GSP.

Ajax Frameworks

Web 2.0 functionality has become so popular that Grails includes three popular Ajax
frameworks by default in every web application: script.aculo.us,6 Rico,7 and Prototype.8

Some of the Grails tag libraries even integrate with them to make standard Ajax behavior
simple even for the Ajax beginner. Chapter 8 will explain how to add Ajax functionality to
your application to increase usability.

Jetty

To ensure Grails has a complete development environment, it includes the popular and
fast Jetty web container/server.9 Grails makes application and container life-cycle man-
agement easy by using its command-line interface to start and stop the server while
taking care of packaging and deploying the application behind the scenes. But by no
means are Grails applications limited to running in a Jetty container. Chapter 12 will
explain how to deploy Grails applications to other containers.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 67

3. http://www.hibernate.org

4. http://www.opensymphony.com/sitemesh/

5. http://www.opensymphony.com

6. http://script.aculo.us

7. http://openrico.org

8. http://www.prototypejs.org

9. http://www.mortbay.org

10450_ch04.qxd 5/21/08 11:24 PM Page 67

http://www.hibernate.org
http://www.opensymphony.com/sitemesh
http://www.opensymphony.com
http://script.aculo.us
http://openrico.org
http://www.prototypejs.org
http://www.mortbay.org

HSQLDB

Having a complete development environment out of the box requires a relational data-
base. Grails includes the 100% Java database called HSQLDB.10 You can use this database
either as a standalone database server or as an embedded database. You can also config-
ure it to run in memory or persisted to disk. By default, Grails uses the embedded in-memory
configuration, so that each time the application is run, the database is rebuilt from
scratch and all data is lost. Chapter 12 will explain how to configure Grails to use other
databases such as MySQL.11

JUnit

For unit testing, Grails uses the popular JUnit framework.12 In the “Implementing Inte-
gration Tests” section, you will learn to write and run unit tests.

Grails Architecture
Now that you know some of the features and open source frameworks included in Grails,
you are more prepared to understand the Grails architecture. Figure 4-1 depicts the
architecture graphically.

Figure 4-1. Grails architecture

In Figure 4-1, notice that the foundation of Grails is the Java Virtual Machine (JVM).
Also, notice the separation in the architecture from the Java language and the JVM. In the
past couple of years, the Java community has seen a rash of new and ported languages
being run on the JVM. This is particularly important in Grails, because in the next level
up from the JVM, you see that both the Java and Groovy languages are being used.

CHAPTER 4 ■ INTRODUCTION TO GRAILS68

10. http://hsqldb.org

11. http://www.mysql.com/

12. http://www.junit.org

10450_ch04.qxd 5/21/08 11:24 PM Page 68

http://hsqldb.org
http://www.mysql.com
http://www.junit.org

Above the languages you find the Grails framework itself, which, as you know from
the previous section, is made up of several industry-standard open source projects such
as Spring, SiteMesh, and GORM/Hibernate, to name just a few. However, as an applica-
tion developer, you’re not limited to the libraries and frameworks Grails has to offer. Your
application can use just about any Java library, whether open source or proprietary. The
final layer of the architecture is the applications you will build with Grails. Typically, this
layer follows the MVC pattern. Grails also makes it easy to organize your application to
make coarse-grained services.

To simplify development, Grails includes a command-line tool for creating many
Grails artifacts and managing Grails projects. The Grails command line is built on top of
Gant,13 a build system that uses the Groovy language to script Apache Ant14 tasks rather
than Ant’s XML format. You will learn more about Gant and adding your own scripts to
the Grails command line in Chapter 12.

From a runtime perspective, you can think of Grails out of the box as looking like
Figure 4-2.

Figure 4-2. Grails default runtime

In Figure 4-2, you see a web browser making a request to a Jetty web container. The
container forwards the request on to a controller in a similar fashion to the standard
MVC model. The controller may set or use data from a domain class (model). As men-
tioned earlier, all Grails domain classes are persistable through the GORM framework.

HSQLDB

Controller

Jetty (Web Container)

JVM

GSP

Dom
ain

CHAPTER 4 ■ INTRODUCTION TO GRAILS 69

13. http://gant.codehaus.org

14. http://ant.apache.org

10450_ch04.qxd 5/21/08 11:24 PM Page 69

http://gant.codehaus.org
http://ant.apache.org

You don’t need to use a Data Access Object (DAO) pattern or write SQL to persist objects.
In Chapter 6, you will learn how to take full advantage of the persistable domain classes.

Out-of-the-box Grails uses an embedded HSQLDB database, which means the data-
base runs in the same JVM as your application and the Jetty web container. When the
controller is done, it forwards the request to a GSP, which is the view technology to render
the HTML that is returned to the requesting browser.

Installing Grails
Considering the alternative to using Grails—downloading and installing a web container
or application server, database, and MVC framework—installing Grails seems almost too
easy. All you need to do is uncompress a file and set up some environment variables, and
you’re done. Most everything is self-contained. Grails does require two prerequisites,
though: you must have a JDK 1.4 or greater, and you must have the JAVA_HOME environ-
ment variable configured for that JDK.

Follow these steps to install Grails:

1. Download the latest Grails .zip or .tar/.gz file release from http://grails.
codehaus.org/Download.

2. Extract the archive to your preferred location.

3. Create a GRAILS_HOME environment variable that points to the path where the Grails
archive was extracted.

4. Append the GRAILS_HOME\bin directory to the PATH environment variable.

Once you complete these steps, the Grails command line will be available. You can use
it to create the project, create artifacts, run the application, and package the application.

Collab-Todo Application
Throughout this book, we’ll use a single web application example to demonstrate how to
write a web application using the Grails framework. The application name is Collab-
Todo, and it is a collaborative Web 2.0 to-do application. The application allows users to
create and manage to-dos in categories. It also allows users to create buddy lists of other
Collab-Todo users to make it easy to assign tasks to other users. In addition, it includes
reports and batch e-mails, along with a thick client and web service access. Figure 4-3
shows what Collab-Todo will look like by the end of the book.

CHAPTER 4 ■ INTRODUCTION TO GRAILS70

10450_ch04.qxd 5/21/08 11:24 PM Page 70

http://grails

Figure 4-3. Final version of the Collab-Todo application

Getting Started with Scaffolding
We feel it is important for you to experience for yourself the power and productivity of Grails
early on. So for the remainder of this chapter, you will be learning to take advantage of Grails
conventions and scaffolding to create a simple but functional version of the Collab-Todo
application. This initial version of the application will not be a production-suitable applica-
tion from a usability and design perspective. However, the Grails scaffolding is able to render

CHAPTER 4 ■ INTRODUCTION TO GRAILS 71

10450_ch04.qxd 5/21/08 11:24 PM Page 71

a simple but functional CRUD web application with almost no code besides your domain
class code. In addition, Grails will generate a database schema and populate a database with
the schema when the application is run. This scaffolding-based version of the application is
suitable for testing domain objects as well as quick application prototyping.

Figure 4-4 shows an example of what the CRUD to-do pages will look like by the end
of the chapter.

Figure 4-4. Todo List page

As you can see in Figure 4-4, the Todo List page provides the ability to view all the
to-dos in the database as well as create new to-dos or delete existing to-dos. It also pro-
vides a link to the edit page, where you can create a new to-do or updating an existing
to-do.

Figure 4-5 shows the Edit Todo page, which is basically the same page used for
updating and creating to-dos.

CHAPTER 4 ■ INTRODUCTION TO GRAILS72

10450_ch04.qxd 5/21/08 11:24 PM Page 72

Figure 4-5. Edit Todo page

As you can tell from Figures 4-4 and 4-5, this is not the most attractive application,
and you probably won’t want to release this to your users. In Chapter 5, you’ll learn how
to make the application more usable and pleasing to your users’ eyes, and in Chapter 8,
you’ll learn how to make it even better by adding Web 2.0 features.

Figure 4-6 is a Unified Modeling Language (UML) diagram of a subset of the
Collab-Todo domain classes you’ll be creating in this chapter.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 73

10450_ch04.qxd 5/21/08 11:24 PM Page 73

Figure 4-6. Subset of the Collab-Todo domain classes

Notice the domain class in Figure 4-6 is very simple and includes only three domain
classes. In Chapter 6, you will extend this domain model and learn about the Grails per-
sistence framework, GORM. Initially, the domain consists of a User class, which has a Todo

(task) class, and user-defined Category classes used for organizing to-dos into logical groups.

Understanding the Scaffolding Process
Creating a Grails application using its scaffolding is really quite simple. The following
seven basic steps summarize the process:

1. Create an application.

2. Run the application.

3. Create the domain class.

4. Implement the integration test.

5. Run the test harness and update the domain classes until the tests pass.

6. Create the controller.

7. Repeat steps 3 through 6 until the domain class and the controllers are complete.

Notice that none of these steps say anything about creating a view, HTML, or any-
thing related to the user interface (UI). You don’t even have to run anything to generate
the presentation. The scaffolding uses introspection to determine the appropriate inter-
face to render at runtime.

Because Grails is an agile framework that tries to provide feedback quickly, you want
to run the application immediately after creating it so you can observe how changes to the
domain class or controllers affect the application.

CHAPTER 4 ■ INTRODUCTION TO GRAILS74

10450_ch04.qxd 5/21/08 11:24 PM Page 74

Creating the Application

To create the application, you follow a pattern that is repeated for creating just about
everything in Grails: you execute a Grails target on the command line. You use the
create-app target to create a new application. This generates the basic application
structure and populates the structure with some basic files.

To create the Collab-Todo application, you need to execute the create-app target
using an optional project name, as shown here:

>grails create-app collab-todo

If you don’t supply the project name, you will be prompted for one.
The output of executing the create-app target is shown here:

Welcome to Grails 1.0 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: C:\devl\java\grails-1.0

Base Directory: C:\devl\workspace

Environment set to development

Note: No plugin scripts found

Running script C:\devl\java\grails-1.0\scripts\CreateApp.groovy

[mkdir] Created dir: C:\devl\workspace\collab-todo\src

[mkdir] Created dir: C:\devl\workspace\collab-todo\src\java

[mkdir] Created dir: C:\devl\workspace\collab-todo\src\groovy

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\controllers

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\services

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\domain

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\taglib

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\utils

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\views

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\views\layouts

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\i18n

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\conf

[mkdir] Created dir: C:\devl\workspace\collab-todo\test

[mkdir] Created dir: C:\devl\workspace\collab-todo\test\unit

[mkdir] Created dir: C:\devl\workspace\collab-todo\test\integration

[mkdir] Created dir: C:\devl\workspace\collab-todo\scripts

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\js

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\css

CHAPTER 4 ■ INTRODUCTION TO GRAILS 75

10450_ch04.qxd 5/21/08 11:24 PM Page 75

http://grails.org

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\images

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\WEB-INF\classes

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\META-INF

[mkdir] Created dir: C:\devl\workspace\collab-todo\lib

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\conf\spring

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\conf\hibernate

[propertyfile] Creating new property file:

C:\devl\workspace\collab-todo\application.properties

[copy] Copying 2 files to C:\devl\workspace\collab-todo

[copy] Copying 2 files to C:\devl\workspace\collab-todo\web-app\WEB-INF

[copy] Copying 5 files to C:\devl\workspace\collab-todo\web-app\WEB-INF\tld

[copy] Copying 87 files to C:\devl\workspace\collab-todo\web-app

[copy] Copying 16 files to C:\devl\workspace\collab-todo\grails-app

[copy] Copying 1 file to C:\devl\workspace\collab-todo\grails-app\conf\spring

[copy] Copying 1 file to C:\devl\workspace\collab-todo

[copy] Copying 1 file to C:\devl\workspace\collab-todo

[copy] Copying 1 file to C:\devl\workspace\collab-todo

[propertyfile] Updating property file:

C:\devl\workspace\collab-todo\application.properties

Created Grails Application at C:\devl\workspace/collab-todo

After the create-app target has run, you will have a new directory matching the name
of your project. This will be the root of your new project, and you must make all subse-
quent Grails command-line calls from within this directory. It’s a good idea to use the cd
command to get into the directory now so you don’t forget. Within the new project direc-
tory, you will find a structure matching the directory structure found in Figure 4-7.

CHAPTER 4 ■ INTRODUCTION TO GRAILS76

10450_ch04.qxd 5/21/08 11:24 PM Page 76

Figure 4-7. Directory structure created by running the create-app target

As mentioned earlier, the directory structure generated from the create-app target is
a part of the Grails practice of convention over configuration. The target provides loca-
tions for placing common artifacts. Throughout the book, you will learn details about
each directory. For now, Table 4-1 provides a summary of the more important directories.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 77

10450_ch04.qxd 5/21/08 11:24 PM Page 77

Table 4-1. Important Directories in the Grails Convention

Directory Description

grails-app/conf Common configuration files such as bootstrapping, logging,
data source, and URL mapping (see the “Configurations”
sidebar)

grails-app/conf/hibernate Custom Hibernate mappings, which are rarely needed (covered
in Chapter 6)

grails-app/conf/spring Custom Spring mapping files

grails-app/controllers Application controllers that handle requests (covered in Chapter 5)

grails-app/domain Domain model classes (covered in Chapter 6)

grails-app/i18n Internationalized message bundles (covered in Chapter 5)

grails-app/services Services (covered in Chapter 6)

grails-app/taglib Custom dynamic tag libraries

grails-app/views GSP (covered in Chapter 5)

grails-app/views/layout Commonly shared page layouts (covered in Chapter 5)

lib Third-party JAR files, such as database drivers

scripts Gant script for automating tasks (covered in Chapter 12)

src/java Additional Java source files

src/groovy Additional Groovy files

test/integration Integration tests (covered in Chapter 5)

test/unit Unit tests (introduced later in this chapter)

web-app Web artifacts that will ultimately comprise a web application
archive (WAR) (many of the artifacts are covered in Chapter 5)

web-app/css Cascading Style Sheets (covered in Chapter 5)

web-app/images Web graphics (covered in Chapter 5)

web-app/js JavaScript (covered in Chapter 8)

web-app/WEB-INF Common Servlet specification WEB-INF directory containing
private artifacts such as configuration files like web.xml, the
Spring application context, and the SiteMesh config

At this point, you’re able to open the project in your development tool of choice. Not
only does the create-app target generate the directory structure, but it also generates
project files for Eclipse15 and TextMate.16 Another option is to use IntelliJ IDEA,17 because
it understands how to consume Eclipse project files.

CHAPTER 4 ■ INTRODUCTION TO GRAILS78

15. http://www.eclipse.org

16. http://macromates.com

17. http://www.jetbrains.com/idea/

10450_ch04.qxd 5/21/08 11:24 PM Page 78

http://www.eclipse.org
http://macromates.com
http://www.jetbrains.com/idea

CONFIGURATIONS

Grails includes four configuration files in the grails-app/config directory. Two of these files are
environmentally aware, meaning you can have different configurations for different environments like
the built-in development, test, and production environments. In Chapter 12, you will learn how to
add custom development environments. The following table describes the standard configuration files.

Grails Configuration Files

Environmentally
Name Aware Description

BootStrap.groovy No Life-cycle–aware configuration containing
callbacks for initializing and destroying the
application

Config.groovy Yes Catchall configuration files containing logging,
Multipurpose Internet Mail Extensions (MIME)
typing, and other configurations

DataSource.groovy Yes Java Database Connectivity (JDBC) or Java
Naming and Directory Interface (JNDI)
configurations

UrlMappings.groovy No Customizable URL mapping file

Running the Application

At this point, you have a functional application that you can run and access via a web
browser. It really does not do much yet, but running it now will enable you to get instant
feedback as you add domain and controller classes.

To run a Grails application, execute the run-app target from your project root direc-
tory as shown here:

> grails run-app

The output of executing the run-app target is shown here:

...

Running script C:\devl\java\grails-1.0\scripts\RunApp.groovy

[mkdir] Created dir: C:\devl\workspace\collab-todo\web-app\WEB-INF\lib

[mkdir] Created dir:

C:\Documents and Settings\Administrator\.grails\1.0\projects\collab-todo\classes

Compiling 4 source files to

CHAPTER 4 ■ INTRODUCTION TO GRAILS 79

10450_ch04.qxd 5/21/08 11:24 PM Page 79

C:\Documents and Settings\Administrator\.grails\1.0\projects\collab-todo\classes

[mkdir] Created dir:

C:\devl\workspace\collab-todo\web-app\WEB-INF\grails-app\i18n

[copy] Copying 8 files to

C:\devl\workspace\collab-todo\web-app\WEB-INF\grails-app\i18n

[copy] Copying 1 file to C:\devl\workspace\collab-todo\web-app\WEB-INF\spring

[copy] Copying 1 file to

C:\Documents and Settings\Administrator\.grails\1.0\projects\collab-todo\classes

[copy] Copying 1 file to

C:\Documents and Settings\Administrator\.grails\1.0\projects\collab-todo\classes

Running Grails application..

2007-10-12 23:16:09.891::INFO: jetty-6.1.4

...

2007-10-12 23:16:09.891::INFO: Started SelectChannelConnector@0.0.0.0:8080

Server running. Browse to http://localhost:8080/collab-todo

Running the run-app target does some initial project setup by copying files into your
web application’s WEB-INF directories. Then it starts a Jetty web container that listens on
localhost port 8080. Jetty then loads the application, causing the Grails internal classes to
get initialized for filtering URL mappings and requests along with GrailsDispatchServlet.
Ultimately, you will know that the application server is available and you can start testing
your application when you see this:

Server running. Browse to http://localhost:8080/collab-todo.

To test your app, point your web browser of choice to that URL, as shown in
Figure 4-8.

Figure 4-8 shows the standard default Grails page. As you can see, it is not very inter-
esting; it looks like a static page. However, as you’ll see soon, there is some dynamism to
this page. If you wish to modify this page, it is the GSP web-app\index.gsp.

CHAPTER 4 ■ INTRODUCTION TO GRAILS80

10450_ch04.qxd 5/21/08 11:24 PM Page 80

mailto:SelectChannelConnector@0.0.0.0:8080
http://localhost:8080/collab-todo
http://localhost:8080/collab-todo

Figure 4-8. Default Grails page

Creating a Domain Class

At this point, the application doesn’t really do anything, so you will have to add some addi-
tional classes for the application to take shape. Typically, you begin by creating a domain
class and then follow it up with an associated controller class. To create a domain class,
use the Grails create-domain-class target. This creates a new Grails domain class in the
grails-app/domain directory, as well as an integration test for the domain class in test/
integration.

■Note The create-domain-class target creates an integration test rather than a unit test, because as
you will learn in Chapter 6, domain classes have dependencies on the database. Making the domain test an
integration test by putting it in the test/integration directory enables the test to have access to the
entire Grails environment, including the database. Without this, the domain class would not have access to
the dynamic methods available to domain classes for persistence.

To create the Todo domain class, you need to execute the create-domain-class target
using an optional class name, as shown here:

> grails create-domain-class todo

If you don’t supply the class name, you will be prompted for one.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 81

10450_ch04.qxd 5/21/08 11:24 PM Page 81

The output of executing the create-domain-class target is shown here:

Running script C:\devl\java\grails-1.0\scripts\CreateDomainClass.groovy

[copy] Copying 1 file to C:\devl\workspace\collab-todo\grails-app\domain

Created for Todo

[copy] Copying 1 file to C:\devl\workspace\collab-todo\test\integration

Created Tests for Todo

Notice that when running the create-domain-class target with the optional class name,
you can leave the class name in lowercase, and Grails will automatically uppercase it for
you so that it follows the standard Groovy class-naming convention. Listing 4-1 shows the
generated Todo domain class.

Listing 4-1. Grails-Generated Todo Domain Class

class Todo {

}

The Todo domain class in Listing 4-1 appears to be the most basic of Groovy classes.
As you will learn in the next couple of sections and in the next two chapters, there is more
to Grails domain classes than meets the eye.

Implementing Integration Tests

As you saw in the previous section, Grails is true to its testing convention by generating
a corresponding integration test every time you create a domain class. Listing 4-2 shows
the generated integration test for the Todo domain class.

Listing 4-2. Grails-Generated Integration Test for the Todo Domain Class

class TodoTests extends GroovyTestCase {

void testSomething() {

}

}

Notice that the integration test in Listing 4-2 extends the standard Groovy test case,
which extends the JUnit test case and adds some convenience assert methods. The gen-
erated integration test also includes a test method template.

CHAPTER 4 ■ INTRODUCTION TO GRAILS82

10450_ch04.qxd 5/21/08 11:24 PM Page 82

■Note As is true with all JUnit test cases, any method prefixed with test will be treated as a test and is
executed when the test harness is run.

Listing 4-3 shows the Todo integration tests updated with two tests: one for testing the
toString() method and one for persisting Todo objects.

Listing 4-3. Todo Integration Tests

1 class TodoTests extends GroovyTestCase {

2

3 void setUp() {

4 Todo.list()*.delete()

5 }

6

7 void testPersist() {

8 new Todo(name: "1", createdDate:new Date(), priority: "", status:"").save()

9 new Todo(name: "2", createdDate:new Date(), priority: "", status:"").save()

10 new Todo(name: "3", createdDate:new Date(), priority: "", status:"").save()

11 new Todo(name: "4", createdDate:new Date(), priority: "", status:"").save()

12 new Todo(name: "5", createdDate:new Date(), priority: "", status:"").save()

13

14 assert 5 == Todo.count()

15 }

16

17 void testToString() {

18 def todo = new Todo(name: "Pickup laundry")

19 assertToString(todo, "Pickup laundry")

20 }

21 }

The integration test in Listing 4-3 contains three methods. The setUp() method on
lines 3–5 is a standard JUnit life-cycle method. It is called prior to executing any method
prefixed with test and should be used to put your tests into a known state. In this case,
the known state is making sure there are no Todos in the database. It does this by using the
dynamic list() method on the Todo class. You were warned that Grails domain classes are
more complicated than they appear.

On a Grails domain class, GORM provides the list() method, which returns a list
containing all the records of that type in the database. In the setup() method, you want to
delete all the Todos returned in the list. Rather than iterate through each object in the list,
you can use the Groovy spread operator (*.) to call the following method on each of the

CHAPTER 4 ■ INTRODUCTION TO GRAILS 83

10450_ch04.qxd 5/21/08 11:24 PM Page 83

objects in the list. In this case, the delete() method removes that object instance from the
database.

■Caution Take care when using the list() method, because it returns all records of the specified type
and can cause large memory consumption, depending on the number of records in the database.

The testPersist() method on lines 7–15 creates five new instances of the Todo domain
class and then saves them to the database using another dynamic Grails domain class
method, save(). Finally, this test method validates that there are five Todos in the database
by using another dynamic Grails domain class method of count() to get the number of
records in the database. It also uses the Groovy assert keyword to validate the proper num-
ber of records.

■Note Whenever unit tests are run or the default configured application is started, an in-memory HSQLDB
database is loaded. This in-memory database does not save anything to disk, so each time the application or
tests are run, you will have a new, clean database. In addition, Hibernate will use the domain classes to cre-
ate or update a schema in that database.

The testToString() test on lines 17–20 is a pretty basic and self-explanatory unit test
that tests the toString() method of the Todo domain class. The only item of interest is the
assertToString() method. You may not recognize this as the standard JUnit assert method.
That’s because it is implemented by the GroovyTestCase class.

Running the Test Harness

At this point, you want to run the test harness. Tests are expected to fail, because the Todo
class still has no implementation. After seeing the failures, you add functionality to the
Todo class and iterate over implementing and testing until all the tests pass.

To run the test harness, simply execute the Grails test-app target. This executes all
the unit and integration tests and displays the results of each test. In addition, it creates
several reports for diagnosing any test errors or failures:

>grails test-app

CHAPTER 4 ■ INTRODUCTION TO GRAILS84

10450_ch04.qxd 5/21/08 11:24 PM Page 84

The output of executing the test-app target is shown here:

...

Running script C:\devl\java\grails-1.0\scripts\TestApp.groovy

...

No tests found in test/unit to execute ...

Running 2 Integration Tests...

Running test TodoTests...

testPersist...SUCCESS

testToString... FAILURE

Integration Tests Completed in 711ms

[junitreport]

Processing C:\devl\workspace\collab-todo\test\reports\TESTS-TestSuites.xml

[junitreport]

Loading stylesheet jar:file:/C:/devl/java/grails-1.0/lib/ant-junit.jar

!/org/apache/tools/ant/taskdefs/optional/junit/xsl/junit-frames.xsl

[junitreport] Transform time: 751ms

Tests failed: 0 errors, 1 failures, 0 compilation errors. View reports in

C:\devl\workspace\collab-todo/test/reports

The results of running the test harness show no unit tests were run, because no unit
tests have been added to the test/unit directory yet. They also show that two integration
tests were run—one that was successful, and one that failed. Because the Todo class does
not have any implementation yet, you expected both tests to fail. So, you should evaluate
the testPersist test to understand why it passed and to improve the test to make sure it
fails before writing the Todo implementation.

Listing 4-4 shows the original implementation of the testPersist test.

Listing 4-4. Original testPersist

void testPersist() {

new Todo(name: "1", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "2", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "3", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "4", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "5", createdDate:new Date(), priority: "", status:"").save()

assert 5 == Todo.count()

}

CHAPTER 4 ■ INTRODUCTION TO GRAILS 85

10450_ch04.qxd 5/21/08 11:24 PM Page 85

In Listing 4-4, five Todos are saved to the database and the count of the inserted Todos
are validated. This currently works because even at this point with no Todo implementa-
tion, Todo objects can be saved to the database. However, looking at the database, you
should see a record with no name, createdDate, priority, or status, because those proper-
ties don’t exist yet. The parameterized constructor happily accepts parameters that do
not map to properties, so this test passes with no problems. To make the test more valu-
able, try retrieving at least one of the Todos based on the value of one of its properties, as
shown in Listing 4-5.

Listing 4-5. Improved testPersist

void testPersist() {

new Todo(name: "1", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "2", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "3", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "4", createdDate:new Date(), priority: "", status:"").save()

new Todo(name: "5", createdDate:new Date(), priority: "", status:"").save()

assert 5 == Todo.count()

def actualTodo = Todo.findByName('1')

assert actualTodo

assert '1' == actualTodo.name

}

Listing 4-5 is the same as Listing 4-4 with three additional lines at the end. After the
saves and validating the count, the test now looks up a Todo by name, using the dynamic
findByName() method that we’ll discuss in Chapter 6. Then the test asserts the object
returned is not null, and then it validates a value.

Running the test harness again shows that both integration tests fail. In addition, it
produces a JUnit HTML report, shown in Figure 4-9 and found in the test/reports/html
directory. This can help you determine why the tests failed.

CHAPTER 4 ■ INTRODUCTION TO GRAILS86

10450_ch04.qxd 5/21/08 11:24 PM Page 86

Figure 4-9. Example unit test report

Drilling into TodoTests, you can see that testPersist errored because there is no prop-
erty of name found on Todo, so the findByName() method could not be invoked properly. You
also learn testToString() fails because the return value does not equal the expected value.
Until you override toString() in the Todo class, the class returns the Grails domain class
default toString().

In addition to the HTML report shown in Figure 4-9, a text version and an XML ver-
sion of the unit test results are also generated in the test/reports/plain and test/reports
directories, respectively.

Implementing a Domain Class

Now that the tests are implemented and failing as expected, it is time to update the
domain class until all tests pass. Listing 4-6 shows the Todo domain class after adding the
fields shown in the UML diagram in Figure 4-6.

Listing 4-6. Todo Domain Class After Adding Attributes, Constraints, and the toString()
Method

1 class Todo {

2

3 String name

4 String note

5 Date createdDate

6 Date dueDate

CHAPTER 4 ■ INTRODUCTION TO GRAILS 87

10450_ch04.qxd 5/21/08 11:24 PM Page 87

7 Date completedDate

8 String priority

9 String status

10

11 static constraints = {

12 name(blank:false)

13 createdDate()

14 priority()

15 status()

16 note(maxSize:1000, nullable:true)

17 completedDate(nullable:true)

18 dueDate(nullable:true)

19 }

20

21 String toString() {

22 name

23 }

24 }

In Listing 4-6, you see that lines 3–9 are several fields of both String and Date types
that you would expect to find in a Todo domain class. However, there are some additional
properties you don’t see that are implicit to a Grails domain class by convention. They
include the id and version properties.

The id property, as you might expect, represents a unique autoincrementing identifier
and is null until the object is initially saved. The version property is a Hibernate mecha-
nism for managing optimistic locking. Each time an object is saved, its version number
gets incremented, and like the id, it is initially null. Before Hibernate saves any object, it
first checks the version number in the database, and if the versions don’t match the object
about to be saved—meaning it was already modified since the last read—Hibernate will
throw an org.hibernate.StaleObjectStateException.

Lines 11–19 demonstrate the Grails construct of constraints. These are basically
rules governing the values of the properties. For example, line 12 states the name prop-
erty is required and may not be empty using a blank:false constraint, while the note,
completedDate, and dueDate properties on lines 16–18 are allowed to be null. Also, note
that the note property on line 16 has a maximum length of 1,000 characters. In addi-
tion to constraining the properties, the constraints dictate the order of fields on the
edit pages as well as the types of HTML form fields rendered by the Grails scaffolding.
The order of the constraints represents the order of the fields on the page. While a
String is usually represented by an HTML input field of type text, a String property
with a maxSize is usually rendered as an HTML input field of textarea to support the
larger amounts of input data.

CHAPTER 4 ■ INTRODUCTION TO GRAILS88

10450_ch04.qxd 5/21/08 11:24 PM Page 88

Domain classes can also have behavior implemented as methods. Lines 21–23 show
the toString() method being overridden. The default toString() behavior of a Grails
domain class is to print the class name followed by a colon and the object ID. To make
the toString() a little more helpful, line 21 prepends the name property of the Todo instance.

This section has not even scratched the surface of domain classes. You will learn lots
more about them in Chapter 6.

Now that the Todo class is complete, rerunning the test harness will result in both
tests passing.

VERSION-CONTROLLING GRAILS FILES

A Grails application includes lots of files, most of which should be version-controlled. However, both the
running of unit tests and the application generate and copy files that should not be version-controlled in
a source code repository like Subversion or Concurrent Versions System (CVS). The following table
includes a list of directories that should be ignored by version control.

Grails Directories Not to Version-Control

Directory Description

web-app/WEB-INF/classes Contains class files that get recompiled at runtime

web-app/WEB-INF/lib Contains JAR files copied from the lib directory and Grails at
runtime

web-app/WEB-INF/grails-app grails-app contents get copied here at runtime

web-app/WEB-INF/spring grails-app/config/spring contents get copied here at
runtime

test/classes Contains class files that are recompiled during testing

test/reports Contains text and HTML reports that get generated during
testing

staging Temporary directory for staging the building of WAR files

Creating the Controller

The last step before iterating over these steps over and over again is to create the con-
troller. As mentioned earlier, the controller is responsible for the interaction between the
view and the domain classes. Fortunately, the Grails scaffolding makes this simple. The
controller consists of only a single line of code that instructs the scaffolding to do its
magic and generate the basic CRUD UI.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 89

10450_ch04.qxd 5/21/08 11:24 PM Page 89

To create a controller class, use the Grails create-controller target. This creates a new
Grails controller class in the grails-app/controllers directory, as well as an integration test
for the controller class in test/integration. It also creates a grails-app/views/<controller

name> directory if it doesn’t exist already.
To create the TodoController class, you need to execute the create-controller target

using an optional class name, as shown here:

>grails create-controller todo

If you don’t supply the class name, you will be prompted for one.
The output of executing the create-controller target is shown here:

...

Running script C:\devl\java\grails-1.0\scripts\CreateController.groovy

[copy] Copying 1 file to C:\devl\workspace\collab-todo\grails-app\controllers

Created Controller for Todo

[mkdir] Created dir: C:\devl\workspace\collab-todo\grails-app\views\todo

[copy] Copying 1 file to C:\devl\workspace\collab-todo\test\integration

Created ControllerTests for Todo

Notice that when running the create-controller with the optional class name, you
can leave the class name in lowercase, and Grails will automatically uppercase it for you
so that it follows the standard Groovy class-naming convention. Listing 4-7 shows the
generated TodoController class.

Listing 4-7. Grails-Generated TodoController Class

class TodoController {

def index = { }

}

The TodoController class in Listing 4-7 contains an empty index action. Chapter 5 will
explain actions on the controller.

For now, to use the Grails scaffolding, change the index action to a scaffold property
and assign it the domain class, as shown in Listing 4-8. That’s all there is to it. This causes
List Page, Create Page, Edit Page, and Show Page views, as well as delete functionality, to
be generated for the specified domain class.

CHAPTER 4 ■ INTRODUCTION TO GRAILS90

10450_ch04.qxd 5/21/08 11:24 PM Page 90

Listing 4-8. Scaffolding-Enabled TodoController

class TodoController {

def scaffold = Todo

}

After changing TodoController to look like it does in Listing 4-8, refresh your browser
to reveal a new TodoController link on the initial page, as shown in Figure 4-10.

■Tip You can make most changes, including changes to the domain and controller classes, without having
to restart the web server. Sometimes, however, changes require a restart. Creating a new controller some-
times requires a restart, so if the controller doesn’t appear in the controllers list, stop the server using Ctrl+C
and the Grails run-app target to restart.

Figure 4-10. Initial Grails page with the TodoController link added

Selecting the TodoController link in Figure 4-10 brings you to the Todo List page
shown in Figure 4-11. The Todo List page is a paginated list of domain objects.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 91

10450_ch04.qxd 5/21/08 11:24 PM Page 91

Figure 4-11. Todo List page

From the list page shown in Figure 4-11, you have the ability to create new domain
objects (as shown in Figure 4-12) by clicking the New button on the navigation bar. You
can also show domain objects (as shown in Figure 4-14) by clicking on the ID.

The save page displays the list of properties in the order in which the constraints are
ordered as shown in the Create Todo page in Figure 4-12. Note that the Grails scaffolding
displays the edit fields in the appropriate date type format. A String is displayed as an
HTML text input field, while createdDate is displayed as a series of drop-downs for the
day of month, month, year, hour, and seconds. In addition, the note property is displayed
as an HTML text-area input due to the maxSize constraint. That’s not all: the Grails scaf-
folding is also smart enough to use the constraints for doing form validation, as shown in
Figure 4-13.

CHAPTER 4 ■ INTRODUCTION TO GRAILS92

10450_ch04.qxd 5/21/08 11:24 PM Page 92

Figure 4-12. Create Todo page

CHAPTER 4 ■ INTRODUCTION TO GRAILS 93

10450_ch04.qxd 5/21/08 11:24 PM Page 93

Figure 4-13. Validation errors

Notice in Figure 4-13 that a validation message is displayed at the top of the page if
the form is submitted with an empty name. The blank:false constraint makes the name
property required.

Figure 4-14 shows a read-only view that gets displayed when the ID is selected from
the Todo List page.

CHAPTER 4 ■ INTRODUCTION TO GRAILS94

10450_ch04.qxd 5/21/08 11:24 PM Page 94

Figure 4-14. Show Todo page

The Show Todo page displays all the properties and values. It also provides access to
the Edit Todo page, as shown in Figure 4-15, where you can delete the domain object.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 95

10450_ch04.qxd 5/21/08 11:24 PM Page 95

Figure 4-15. Edit Todo page

The Edit Todo page, shown in Figure 4-15, is really the same as the Create Todo page,
except the data is repopulated with the domain object values, and it has Update and Delete
buttons at the bottom of the page.

Finishing the Remaining Domain and Controllers

Now that you’ve created the Todo domain and controller classes, the steps for creating
the domain classes and controller classes can be repeated for the remaining domain
and controllers: Category and User. Then you can add the relationships between the
domain classes.

As illustrated in the UML diagram in Figure 4-6, the Category class is very simple.
Listing 4-9 shows the code after generating the class using the Grails create-domain-class
target and adding the properties from the UML diagram.

CHAPTER 4 ■ INTRODUCTION TO GRAILS96

10450_ch04.qxd 5/21/08 11:24 PM Page 96

Listing 4-9. Category Domain Class

class Category {

String name

String description

static constraints = {

name(blank:false)

}

String toString() {

name

}

}

In Listing 4-9, you see the Category class just has name and description properties
and an overloaded toString() method that returns the name property. This overloaded
toString() method will become important later, because it is used to populate an HTML
select field. Without it, the select field would only display the category’s id, making it dif-
ficult to differentiate categories in the list. The Category class also includes a constraint,
which requires the name property.

The User domain class follows the same pattern as both the Todo and Category classes.
Listing 4-10 shows the code after generating the class with the Grails create-domain-class
target and adding the properties from the UML diagram.

Listing 4-10. User Domain Class

class User {

String userName

String firstName

String lastName

static constraints = {

userName(blank:false,unique:true)

firstName(blank:false)

lastName(blank:false)

}

String toString () {

"$lastName, $firstName"

}

}

CHAPTER 4 ■ INTRODUCTION TO GRAILS 97

10450_ch04.qxd 5/21/08 11:24 PM Page 97

In Listing 4-10, you see the User class contains userName, firstName, and lastName
properties. It also contains constraints that make all properties required and forces
the userName property to be unique in the database. Finally, the overridden toString()
method returns the user’s name in a last-name-first format.

■Note If you’re making changes to domain or controller classes while the application is running with the
default development data-source configurations, it is common for all the data to disappear. This happens
because the changes to the domain class cause Hibernate to regenerate the schema. In Chapter 12, you’ll
learn how to change the default development data-source configurations once the domain classes have
been completed.

The controller classes are carbon copies of TodoController. Listing 4-11 shows
CategoryController after it has been created with the Grails create-controller target and
the scaffolding variable set.

Listing 4-11. CategoryController

class CategoryController {

def scaffold = Category

}

Listing 4-12 shows UserController.

Listing 4-12. UserController

class UserController {

def scaffold = User

}

After completing the Category and User domain and controller classes, the applica-
tion start page displays all three controllers. In addition, CRUD pages for both Category
and User are available when clicking on the respective controller links.

Creating Domain Relationships

At this point, you have three standalone domain classes—Todo, Category, and User—with
no relationships between them. But remember that the UML diagram in Figure 4-6 showed
that users had user-defined categories as well as to-dos that were organized by categories.

CHAPTER 4 ■ INTRODUCTION TO GRAILS98

10450_ch04.qxd 5/21/08 11:24 PM Page 98

Now it’s time to represent those one-to-many relationships between the domain classes
using the belongsTo and hasMany properties.

Listing 4-13 shows the new Todo class, which shows the relationships with User and
Category.

Listing 4-13. Todo Domain Class with Relationships to the User and Category Domain
Classes

class Todo {

String name

String note

Date createdDate

Date dueDate

Date completedDate

String priority

String status

User owner

Category category

static belongsTo = [User, Category]

static constraints = {

name(blank:false)

createdDate()

priority()

status()

note(maxSize:1000, nullable:true)

completedDate(nullable:true)

dueDate(nullable:true)

}

String toString() {

name

}

}

Notice in Listing 4-13 that the relationship is defined with the belongsTo property
to the User and Category classes. We’ve also added new owner and category properties.
belongsTo tells GORM to delete the to-do if either the associated user or the category is
deleted. Scaffolding renders these relationships as the select fields on the Create Todo
and Edit Todo screens, as shown in Figure 4-16.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 99

10450_ch04.qxd 5/21/08 11:24 PM Page 99

Figure 4-16. Create Todo edit page with Category and Owner select fields

Notice in Figure 4-16 that Category and Owner are select fields that display the domain
class toString() method results.

Like the Todo class, the Category class has a belongsTo relationship with User, but it also
has a collection of Todos, as shown in Listing 4-14.

Listing 4-14. Category Domain Class with Relationships to the User and Todo Domain
Classes

class Category {

String name

String description

User user

CHAPTER 4 ■ INTRODUCTION TO GRAILS100

10450_ch04.qxd 5/21/08 11:24 PM Page 100

static belongsTo = User

static hasMany = [todos: Todo]

static constraints = {

name(blank:false)

}

String toString() {

name

}

}

Notice that in addition to belongsTo associated with User, Category contains a hasMany

property, which is a map designating a one-to-many relationship with the Todo class. Also,
the collection is available via the todos property.

Finally, the User class in Listing 4-15 has now defined its relationships with Todo and
Category.

Listing 4-15. User Domain Class with Relationships to the Todo and Category Domain
Classes

class User {

String userName

String firstName

String lastName

static hasMany = [todos: Todo, categories: Category]

static constraints = {

userName(blank:false,unique:true)

firstName(blank:false)

lastName(blank:false)

}

String toString () {

"$lastName, $firstName"

}

}

CHAPTER 4 ■ INTRODUCTION TO GRAILS 101

10450_ch04.qxd 5/21/08 11:24 PM Page 101

As shown in Listing 4-15, the changes required to include the relationships with the
Todo and Category classes only take a single line. The hasMany property identifies collec-
tions named todos and categories.

■Note We’ll discuss relationships in more detail in Chapter 6.

As stated earlier, when you run the application, Hibernate creates a database schema
based on domain classes. Figure 4-17 shows an entity relational diagram of the domain
classes so far.

Figure 4-17. Entity relational diagram

Notice that the entity relational diagram looks almost identical to the UML diagram
shown in Figure 4-6. Hibernate creates three tables with table names based on the class
names. It also creates fields for each of the properties using underscores instead of
CamelCase. Also, notice the id and version columns are the Hibernate columns for
object identity and optimistic locking. Hibernate also creates foreign keys to represent
the relationships between the domain classes.

During development, out-of-the-box Grail uses a Jetty web container and an embedded
HSQLDB database. However, many operational environments use other web containers or
applications servers and use server-based databases. In Chapter 12, we will look at how to
package and deploy an application to an alternative operating environment.

CHAPTER 4 ■ INTRODUCTION TO GRAILS102

10450_ch04.qxd 5/21/08 11:24 PM Page 102

Summary
In this chapter, you were introduced to the fact that Grails is a new web development
framework that combines the best of Java open source, conventions, the Groovy dynamic
language, and the power of the Java platform.

You also saw how easy it is to develop a fully functional application using Grails scaf-
folding to do most of the work. In Chapter 5, you will learn how to make the application
pretty and customize it to your own look and feel, as well as make the controllers more
functional. Then in Chapter 6, you will learn how to enhance the domain classes, includ-
ing accessing more of the persistence features of GORM.

CHAPTER 4 ■ INTRODUCTION TO GRAILS 103

10450_ch04.qxd 5/21/08 11:24 PM Page 103

10450_ch04.qxd 5/21/08 11:24 PM Page 104

Building the User Interface

Chapter 4 introduced the layering and components of Grails, and it showed you how to cre-
ate a simple application using Grails scaffolding. In this chapter, you’ll use the domain objects
from Chapter 4 to start the process of creating an attractive, full-featured application.

You will learn how to use GSP, Grails tags, Grails templates, and CSS to create a look
and feel that will be common across the application. You will create the login view and
controller actions to support it. Once you have some code, you will start building a test-
ing harness that will include integration tests and functional tests. Next, you will start to
focus on user experience. You will look at validation, errors, and messages, and you’ll
learn how to customize them. You’ll further enhance the view and controllers by remov-
ing unnecessary information, and you’ll use actions to set properties on the domain
object. To support the application, you will create a simple audit logging facility that
leverages the Grails log controller property.

Starting with the End in Mind
The goal for this chapter is to create the look and feel for the Collab-Todo application’s lay-
out. Figure 5-1 shows a wireframe to give you an idea of how the application is laid out.

105

C H A P T E R 5

10450_ch05.qxd 5/20/08 10:38 PM Page 105

Figure 5-1. The Collab-Todo wireframe

The wireframe follows a common format: two columns centered on the page, gutters
on both sides for spacing, and a header and a footer. Table 5-1 describes each component.

Table 5-1. Wireframe Components

Component Description

gutter Provides whitespace on the edges of the browser so that the main content area
is centered in the browser.

topbar Provides the ability to log in and log out, and displays the user’s first and last
name when he or she is logged in.

header Displays the application’s title, “Collab-Todo.”

content This is the main content area of the application. The majority of the
application data is displayed here.

right sidebar Chapter 8 will use the right sidebar to display buddy list information.

footer Displays copyright information.

Like most modern view technologies, Grails uses a layout and template-based
approach to assemble the view/UI. A template is a view fragment that resides in the
grails-app/views directory and starts with an underscore. The underscore is Grails’ con-
vention for signifying that GSP is a template. Best practices dictate that you should put
templates that are associated with a specific domain, such as User, in the domain’s view
directory, such as grails-app/views/user/_someTemplate.gsp. You should put templates that
are more generic or shared across views in a common place, such as grails-app/views/common.

CHAPTER 5 ■ BUILDING THE USER INTERFACE106

10450_ch05.qxd 5/20/08 10:38 PM Page 106

A layout assembles the templates and positions them on the page. You create the lay-
out using main.gsp (grails-app/views/layouts/main.gsp) and CSS (web-app/css/main.css).
Create a couple of templates (_topbar.gsp and _footer.gsp) that will be common across
all views, then apply some CSS styling and leverage it in main.gsp.

Let’s start with a simple footer to illustrate the point.

Creating the Footer

The goal is for a simple copyright notice to be displayed at the bottom of every page in
the web site. As you might have guessed, you need to create a GSP fragment named
_footer.gsp in the grails-app/views/common directory, then add the _footer.gsp template
to the layout using the <g:render template="/common/footer" /> tag. You then need to
style the footer by adding a <div> section to the main layout using a style class that you
define in the main.css. Listing 5-1 shows what you need to do.

Listing 5-1. The Footer Template (_footer.gsp)

© 2008 Beginning Groovy and Grails: From Novice

to Professional

Christopher Judd, Joseph Faisal Nusairat, and James Shingler

You need to add the copyright to the main layout (main.gsp) so that it’s included on
every page. This is where the <g:render> tag1 comes to your aid. You use the <g:render>
tag, which has a template attribute, to insert templates into GSPs. All you have to do is
add <g:render template="/common/footer" /> to the bottom of main.gsp. Listing 5-2 shows
the content of main.gsp.

■Note By convention, the underscore and .gsp are omitted from the template attribute.

Listing 5-2. The Main Layout (main.gsp)

<html>

<head>

<title><g:layoutTitle default="Grails" /></title>

<link rel="stylesheet"

href="${createLinkTo(dir:'css',file:'main.css')}" />

CHAPTER 5 ■ BUILDING THE USER INTERFACE 107

1. http://www.grails.org/Tag+-+render

10450_ch05.qxd 5/20/08 10:38 PM Page 107

http://www.grails.org/Tag+-+render

<link rel="shortcut icon" href="${createLinkTo(dir:'images',

file:'favicon.ico')}" type="image/x-icon" />

<g:layoutHead />

<g:javascript library="application" />

</head>

<body>

<div id="spinner" class="spinner" style="display:none;">

<img src="${createLinkTo(dir:'images',file:'spinner.gif')}"

alt="Spinner" />

</div>

<div class="logo"><img src="${createLinkTo(dir:'images',

file:'grails_logo.jpg')}" alt="Grails" /></div>

<g:layoutBody />

<g:render template="/common/footer" />

</body>

</html>

Figure 5-2 shows what happens when you reload the home page.

Figure 5-2. Adding a copyright notice

The copyright footer is on the page, but it isn’t really what you want. It would be nice
if it were centered and had a separator. You could just put the style information directly
in the footer template, but a better solution, and a best practice, is to use CSS.2 You need

CHAPTER 5 ■ BUILDING THE USER INTERFACE108

2. http://www.w3schools.com/css, http://www.glish.com/css

10450_ch05.qxd 5/20/08 10:38 PM Page 108

http://www.w3schools.com/css
http://www.glish.com/css

to add a <div> tag with the id attribute set to "footer" in the main layout, and you need
to define the "footer" style in main.css. Listing 5-3 shows the changes you need to make to
main.gsp.

Listing 5-3. The Enhanced Main Layout (main.gsp)

<html>

<head>

<title><g:layoutTitle default="Grails" /></title>

<link rel="stylesheet"

href="${createLinkTo(dir:'css',file:'main.css')}" />

<link rel="shortcut icon" href="${createLinkTo(dir:'images',

file:'favicon.ico')}" type="image/x-icon" />

<g:layoutHead />

<g:javascript library="application" />

</head>

<body>

<div id="spinner" class="spinner" style="display:none;">

<img src="${createLinkTo(dir:'images',file:'spinner.gif')}"

alt="Spinner" />

</div>

<div class="logo"><img src="${createLinkTo(dir:'images',

file:'grails_logo.jpg')}" alt="Grails" /></div>

<g:layoutBody />

<div id="footer">

<g:render template="/common/footer" />

</div>

</body>

</html>

Listing 5-4 shows how to define the footer style.

Listing 5-4. The Footer Style

#footer {

clear:both;

text-align: center;

padding: 3px;

border-top: 1px solid #333;

}

CHAPTER 5 ■ BUILDING THE USER INTERFACE 109

10450_ch05.qxd 5/20/08 10:38 PM Page 109

Figure 5-3 shows the results.

Figure 5-3. Styling the footer

Let’s review how to add the footer. First, you create the _footer.gsp template and
locate it in the grails-app/views/common directory. Second, you add the _footer.gsp tem-
plate to the layout using the <g:render template="/common/footer" /> tag. Third, you style
the footer by adding a <div> section to the main layout using a style class that you defined
in the main.css.

Now, you are going to take what you learned by creating the footer and start building
the login/logout functionality.

Creating the Topbar

You create the topbar by adding a topbar (_topbar.gsp) template to the main layout. The
topbar template is common and should be located in the grails-app/view/common direc-
tory. Listing 5-5 shows the content of the topbar template.

Listing 5-5. The Topbar Template (_topbar.gsp)

01 <div id="menu">

02 <nobr>

03 <g:if test="${session.user}">

04 ${session.user?.firstName} ${session.user?.lastName} |

05 <g:link controller="user" action="logout">Logout</g:link>

06 </g:if>

CHAPTER 5 ■ BUILDING THE USER INTERFACE110

10450_ch05.qxd 5/20/08 10:38 PM Page 110

07 <g:else>

08 <g:link controller="user" action="login">Login</g:link>

09 </g:else>

10 </nobr>

11 </div>

Listing 5-5 uses three Grails tags that you haven’t seen yet: <g:if>,3 <g:else>,4 and
<g:link>.5 The <g:if> and <g:else> tags work together to create “if-then-else” logic. The
<g:link> tag creates a hypertext link (i.e., http://localhost:8080/collab-todo/user/logout).
In lines 3–6, you check if the session has a User object. If the session has a User object, the
user’s name followed by a | and a Logout link is printed. Lines 7–9 shows the else condi-
tion of the if statement, which displays the Login link. Listing 5-6 shows how to add the
topbar to the main layout.

Listing 5-6. Enhancing the Main Layout for the Topbar (main.gsp)

<html>

. . .

<body>

<div id="spinner" class="spinner" style="display: none;">

<img src="${createLinkTo(dir:'images',file:'spinner.gif')}"

alt="Spinner" />

</div>

<div id="topbar">

<g:render template="/common/topbar" />

</div>

<div class="logo">

<img src="${createLinkTo(dir:'images',file:'grails_logo.jpg')}"

alt="Grails" />

</div>

. . .

Now add the CSS fragments found in Listing 5-7 to main.css.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 111

3. http://www.grails.org/GSP+Tag+-+if

4. http://www.grails.org/GSP+Tag+-+else

5. http://www.grails.org/Tag+-+link

10450_ch05.qxd 5/20/08 10:38 PM Page 111

http://localhost:8080/collab-todo/user/logout
http://www.grails.org/GSP+Tag+-+if
http://www.grails.org/GSP+Tag+-+else
http://www.grails.org/Tag+-+link

Listing 5-7. The Topbar Styles

#topbar {

text-align:left;

width: 778px;

margin: 0px auto;

padding: 5px 0;

}

#topbar #menu {

float: right;

width: 240px;

text-align: right;

font-size: 10px;

}

Figure 5-4 shows the results.

Figure 5-4. Adding the topbar template

Notice that the Login/Logout link is located in the upper-right corner of the browser.

Adding More Look and Feel

Now you need to finish the transformation so that Collab-Todo has its own look and feel
instead of appearing that it came right out of the box. Do this by adding the right sidebar,
replacing the Grails header, and setting the default title. As noted earlier, Chapter 8 will use

CHAPTER 5 ■ BUILDING THE USER INTERFACE112

10450_ch05.qxd 5/20/08 10:38 PM Page 112

the right sidebar to display the user’s buddies. Start off with some CSS styling by adding
the CSS snippet in Listing 5-8 to the main style sheet (main.css).

Listing 5-8. CSS Styling

#header {

width: 778px;

background: #FFFFFF url(../images/header_background.gif) repeat-x;

height: 70px;

margin: 0px auto;

}

#header h1 {

font-family:Arial,sans-serif;

color: white;

padding: 20px 0 0 6px;

font-size:1.6em;

}

body {

margin: 0px;

padding: 0px;

text-align:center;

font-family: "Trebuchet MS",Arial,Helvetica,sans-serif;

font-style: normal;

font-variant: normal;

font-weight: normal;

font-size: 13px;

line-height: normal;

font-size-adjust: none;

font-stretch: normal;

color: #333333;

}

#page {

width: 778px;

margin: 0px auto;

padding: 4px 0;

text-align:left;

}

CHAPTER 5 ■ BUILDING THE USER INTERFACE 113

10450_ch05.qxd 5/20/08 10:38 PM Page 113

#content {

float: left;

width: 560px;

color: #000;

}

#sidebar {

float: right;

width: 200px;

color: #000;

padding: 3px;

}

■Note You can find header_background.gif in the project source.

Now, you need to take advantage of the CSS styling in the main layout (main.gsp), as
shown in Listing 5-9.

Listing 5-9. Finishing the Layout (main.gsp)

01 <html>

02 <head>

03 <title><g:layoutTitle default="Collab Todo" />

04 </title>

05 <link rel="stylesheet"

06 href="${createLinkTo(dir:'css',file:'main.css')}" />

07 <link rel="shortcut icon"

08 href="${createLinkTo(dir:'images',file:'favicon.ico')}"

09 type="image/x-icon" />

10 <g:layoutHead />

11 <g:javascript library="application" />

12 </head>

13 <body>

14 <div id="page">

15 <div id="spinner" class="spinner" style="display: none;">

16 <img src="${createLinkTo(dir:'images', file:'spinner.gif')}"

17 alt="Spinner" />

18 </div>

19

CHAPTER 5 ■ BUILDING THE USER INTERFACE114

10450_ch05.qxd 5/20/08 10:38 PM Page 114

20 <g:render template="/common/topbar" />

21

22 <div id="header">

23 <h1>Collab-Todo</h1>

24 </div>

25

26 <div id="content">

27 <g:layoutBody />

28 </div>

29

30 <div id="sidebar">

31 <g:render template="/common/buddies" />

32 </div>

33

34 <div id="footer">

35 <g:render template="/common/footer" />

36 </div>

37 </div>

38 </body>

39 </html>

BUDDIES TEMPLATE

We’ll cover the _buddies.gsp template in detail in Chapter 8. Until then, add the following snippet to
the /common/_buddies.gsp template:

<div id="buddies">

<div class="title">Buddies</div>

</div>

Let’s talk about the changes you made to the layout. Line 3 uses the <g:layoutTitle>
tag. If the view being decorated doesn’t have a title, then the default “Collab Todo” will be
applied to the page. Line 14 adds a <div> that uses the page style. Together with the body
style, the page style creates a container that’s 778 pixels wide and centered on the page.
Lines 22–24 replace the Grails header with the Collab-Todo header. If you look carefully
at the CSS header style, you’ll see that it defines a header image (header_background.gif).
Lines 26 and 28 wrap the view’s body with the content style. This means that pages deco-
rated by main.gsp are inserted here. The content style creates a container 560 pixels wide
and left-aligns it within the page container. Lines 30–32 wrap the buddies template with

CHAPTER 5 ■ BUILDING THE USER INTERFACE 115

10450_ch05.qxd 5/20/08 10:38 PM Page 115

the sidebar style, which creates a container 200 pixels wide and right-aligns it within the
page container.

You can see the results of your work in Figure 5-5.

Figure 5-5. The completed layout

It’s starting to look good; you have just one more thing to do. You won’t use the default
index page for long, but let’s change “Welcome to Grails” and the body. You can find the
HTML for this in web-app/index.gsp. Replace the contents of index.gsp with the contents
found in Listing 5-10.

Listing 5-10. A New Index Page (index.gsp)

01 <html>

02 <head>

03 <title>Welcome to Collab-Todo</title>

04 <meta name="layout" content="main" />

05 </head>

06 <body>

07 <h1 style="margin-left:20px;">Welcome to Collab-Todo</h1>

08 <p style="margin-left:20px;width:80%">

09 Welcome to the Collab-Todo application. This application was built

10 as part of the Apress Book, "Beginning Groovy and Grails."

11 Functionally, the application is a collaborative "To-Do"

12 list that allows users and their buddies to jointly

13 manage "To-Do" tasks.</p>

14 <p style="margin-left:20px;width:80%">Building the Collab-Todo

CHAPTER 5 ■ BUILDING THE USER INTERFACE116

10450_ch05.qxd 5/20/08 10:38 PM Page 116

15 application is used to walk the user through using Grails 1.0 to

16 build an application. Below is a list of controllers that are

17 currently deployed in this application. Click on each to execute

18 its default action:</p>

19

20 <div class="dialog" style="margin-left:20px;width:60%;">

21

22 <g:each var="c" in="${grailsApplication.controllerClasses}">

23 <li class="controller">

24 ${c.fullName}

25 </g:each>

26

27 </div>

28 </body>

29 </html>

A couple of items in the file deserve explanation. Lines 22–25 illustrate the usage of
<g:each>, an iteration tag. In this case, it is iterating over a collection of all controller
classes that are a part of the application to display the name of the controller class in a list.

Line 4 is an example of using layouts by convention. In this case, the layout metatag
causes the “main” layout (main.gsp) to be applied to the page. You might recall that all lay-
outs reside within the grails-app/views/layouts directory.

You have created the layout, and it’s looking good. You can see the results of your
work in Figure 5-6.

Figure 5-6. Layout results

CHAPTER 5 ■ BUILDING THE USER INTERFACE 117

10450_ch05.qxd 5/20/08 10:38 PM Page 117

Setting up the wireframe exposes you to layouts, templates, CSS, and a couple of
Grails tags. Grails, like all modern web frameworks, supports tag libraries. The Grails tag
library is similar to the JavaServer Pages Standard Tag Library (JSTL) and Struts tags. It
contains tags for everything from conditional logic to rendering and layouts. The follow-
ing section provides a quick overview of the Grails tags.6

Grails Tags

Part of Grails’ strength in the view layer is its tag library. Grails has tags to address every-
thing from conditional logic and iterating collections to displaying errors. This section
provides an overview of the Grails tags.

Logical Tags

Logical tags allow you to build conditional “if-elseif-else” logic. Listing 5-5 demonstrated
the use of the <g:if> and <else> tags in topbar.gsp. Table 5-2 contains an overview of the
logical tags.

Table 5-2. Grails Logical Tags

Tag Name Tag Description

<g:if> Logical switch based upon a test expression

<g:else> The else portion of an if statement

<g:elseif> The else if portion of an if statement

Iteration Tags

Iteration tags are used to iterate over collections or loop until a condition is false. The
<g:each> tag was used in index.gsp in Listing 5-10. Table 5-3 contains an overview of the
iteration tags.

Table 5-3. Grails Iteration Tags

Tag Name Tag Description

<g:while> Executes a loop while a test condition is true

<g:each> Iterates over a collection

CHAPTER 5 ■ BUILDING THE USER INTERFACE118

6. http://www.grails.org/GSP+Tag+Reference

10450_ch05.qxd 5/20/08 10:38 PM Page 118

http://www.grails.org/GSP+Tag+Reference

Tag Name Tag Description

<g:collect> Iterates over a collection and transforms the results as defined in the expr parameter

<g:findAll> Iterates over a collection where the elements match the GPath defined in the
expr parameter

<g:grep> Iterates over a collection where the elements match the filter defined in the expr
parameter

Assignment Tags

You use assignment tags to create and assign a value to a variable. Table 5-4 contains an
overview of assignment tags.

Table 5-4. Grails Assignment Tags

Tag Name Tag Description

<def> (deprecated) Defines a variable to be used within the GSP page; use <set> instead

<set> Sets the value of a variable used within the GSP page

Linking Tags

Linking tags are used to create URLs. The <g:link> tag was used in topbar.gsp (shown in List-
ing 5-5), and <g:createLinkTo> was used as an expression in main.gsp (shown in Listing 5-9).
Table 5-5 contains an overview of the linking tags.

Table 5-5. Grails Linking Tags

Tag Name Tag Description

<g:link> Creates an HTML link using supplied parameters

<g:createLink> Creates a link that you can use within other tags

<g:createLinkTo> Creates a link to a directory or file

Ajax Tags

You use Ajax tags to build an Ajax-aware application. Chapter 8 uses some of these tags to
enhance the user interface. Table 5-6 contains an overview of the Ajax tags.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 119

10450_ch05.qxd 5/20/08 10:38 PM Page 119

Table 5-6. Grails Ajax Tags

Tag Name Tag Description

<g:remoteField> Creates a text field that invokes a link when changed

<g:remoteFunction> Creates a remote function that is called on a DOM event

<g:remoteLink> Creates a link that calls a remote function

<g:formRemote> Creates a form tag that executes an Ajax call to serialize the form elements

<g:javascript> Includes JavaScript libraries and scripts

<g:submitToRemote> Creates a button that executes an Ajax call to serialize the form elements

Form Tags

Form tags are used to create HTML forms. Table 5-7 contains an overview of form tags.

Table 5-7. Grails Form Tags

Tag Name Tag Description

<g:actionSubmit> Creates a submit button

<g:actionSubmitImage> Creates a submit button using an image

<g:checkBox> Creates a check box

<g:currencySelect> Creates a select field containing currencies

<g:datePicker> Creates a configurable date picker for the day, month, year, hour,
minute, and second

<g:form> Creates a form

<g:hiddenField> Creates a hidden field

<g:localeSelect> Creates a select field containing locales

<g:radio> Creates a radio button

<g:radioGroup> Creates a radio button group

<g:select> Creates a select/combo box field

<g:textField> Creates a text field

<g:textArea> Creates a text area field

<g:timeZoneSelect> Creates a select field containing time zones

UI Tags

You use UI tags to enhance the user interface. The only official UI Grails tag is the rich
text editor, but several UI tags built by the Grails community are available as plug-ins.
Table 5-8 contains an overview of the UI tag.

CHAPTER 5 ■ BUILDING THE USER INTERFACE120

10450_ch05.qxd 5/20/08 10:38 PM Page 120

Table 5-8. Grails UI Tag

Tag Name Tag Description

<g:richTextEditor> Creates a rich text editor, which defaults to fckeditor

Render and Layout Tags

Render and layout tags are used to create the layouts and render templates. As you might
expect, several render and layout tags were used in main.gsp. Table 5-9 contains an overview
of the render and layout tags.

Table 5-9. Grails Render and Layout Tags

Tag Name Tag Description

<g:applyLayout> Applies a layout to a body or template

<g:encodeAs> Applies dynamic encoding to a block of HTML to bulk-encode the content

<g:formatDate> Applies a SimpleDateFormat to a date

<g:formatNumber> Applies a DecimalFormat to number

<g:layoutHead> Displays a decorated page’s header, which is used in layouts

<g:layoutBody> Displays a decorated page’s body, which is used in layouts

<g:layoutTitle> Displays a decorated page’s title, which is used in layouts

<g:meta> Displays application metadata properties

<g:render> Displays a model using a template

<g:renderErrors> Displays errors

<g:pageProperty> Displays a property from a decorated page

<g:paginate> Displays Next/Previous buttons and breadcrumbs for large results

<g:sortableColumn> Displays a sortable table column

Validation Tags

Validation tags are used to display errors and messages. Table 5-10 contains an overview
of the validation tags.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 121

10450_ch05.qxd 5/20/08 10:38 PM Page 121

Table 5-10. Grails Validation Tags

Tag Name Tag Description

<g:eachError> Iterates through errors

<g:hasErrors> Checks if errors exist within the bean, model, or request

<g:message> Displays a message

<g:fieldValue> Displays the value of a field for a bean that has data binding

Making the Topbar Functional
Now that you have the layout, let’s make the topbar functional. You want the topbar to
provide the user the ability to log in. Once the user has logged in, the topbar should dis-
play the username and provide the ability for the user to log out. When the user selects
the Login link, he or she should be presented with a Login form.

■Note The login functionality you are building initially is simply to identify who is using the system. It’s not
meant to provide a full, robust security system. Because the login you are constructing is temporary, adding
authentication logic to all controller actions is out of scope at this time. In Chapter 7, you will add a fully
functional security system.

The Login View

Creating the login view requires you to create a GSP in the appropriate directory. The
GSP contains a form that has a single selection field of usernames and a submit button.
When the user submits the selection, the form invokes the handleLogin action on the
UserController. Figure 5-7 illustrates the login view.

Figure 5-7. The login view

CHAPTER 5 ■ BUILDING THE USER INTERFACE122

10450_ch05.qxd 5/20/08 10:38 PM Page 122

Let’s take a look at the Login link, <g:link controller="user" action="login">
Login</g:link>. When the user selects the Login link, the login action on the
UserController is invoked. We’ll explain the login action in the next section.

Based upon convention, login.gsp should go in the grails-app/views/user directory.
Listing 5-11 shows the contents of login.gsp.

Listing 5-11. The Login View (login.gsp)

01 <html>

02 <head>

03 <title>Login Page</title>

04 <meta name="layout" content="main" />

05 </head>

06 <body>

07 <div class="body">

08 <g:if test="${flash.message}">

09 <div class="message">

10 ${flash.message}

11 </div>

12 </g:if>

13 <p>

14 Welcome to Your ToDo List. Login below

15 </p>

16 <form action="handleLogin">

17

18 <label for="login">

19 Sign In:

20 </label>

21

22 <g:select name='userName' from="${User.list()}"

23 optionKey="userName" optionValue="userName"></g:select>

24

25 <div class="buttons">

26 <g:actionSubmit value="Login" />

27

28 </div>

29 </form>

30 </div>

31 </body>

32 </html>

CHAPTER 5 ■ BUILDING THE USER INTERFACE 123

10450_ch05.qxd 5/20/08 10:38 PM Page 123

Let’s review the form. Lines 1–5 define the title and determine that the page is dec-
orated by the main layout. This means that main.gsp acts as a container for login.gsp.
Take a look at line 26 in Listing 5-9. In this case, the body of login.gsp is inserted at
the <g:layoutBody> tag. Remember that the main layout contains a default title,
<g:layoutTitle default="Collab Todo" />. When login.gsp is decorated with the main
layout, the title in login.gsp is used instead of the default that was defined in the layout.

Lines 6–31 define the body of the page. Lines 9–12 display flash messages, which
we’ll cover shortly in the “Flash and Flash Messages” section. Lines 16–29 create the form
with a selection field. Line 16 specifies that when the form is submitted, the handleLogin
action of the UserController is invoked. In lines 22–23, the Grails select tag creates an HTML
selection element. The name attribute sets the selection name to userName (which in turn is
passed to the login action). When evaluated, the form attribute results in a collection that
Grails uses to create the options. optionKey and optionValue are special attributes used to
create the HTML <option> element ID and the text display in the selection field. Lines
25–28 use the Grails <g:actionSubmit> tag to create a form submission button.

If you run the application and access the view right now, you’ll get a 404 error. This is
because the topbar links to the login view via the UserController login action, which hasn’t
been created yet.

The login Action

Currently, the UserController is set up with dynamic scaffolding. You will continue to use
the dynamic scaffolding and add the login action to it. Listing 5-12 shows the updated
version of the UserController class.

Listing 5-12. The login Action

class UserController {

def scaffold = User

def login = {}

}

A common best practice on the Web is to use actions as a redirection mechanism.
By convention, Grails uses the name of the action to look up a GSP of the same name.

If you click on the Login link now, the login view will be displayed, and the User
Name selection field will be blank. Recall from Listing 5-11 that you call User.list() to
populate the selection with a collection of users. You haven’t added any users yet, so the
list is empty. Test the functionality of the form by creating two users. From the home
page, select UserController ➤ New User. Now when you select Login, the User Name
selection field is populated (see Figure 5-8).

CHAPTER 5 ■ BUILDING THE USER INTERFACE124

10450_ch05.qxd 5/20/08 10:38 PM Page 124

Figure 5-8. A logged-in user

Next, you need to implement the login logic through the UserController handleLogin
action.

Handling the Login and Logout Actions

You call the handleLogin action to log in a user. When you call the action, the Login form is
passed the userName of the user to be signed in. Logging in is accomplished by adding the
user object associated with the userName to the session. If the user cannot be found, an
error message is created, and the user is redirected to the login view. In this particular
example, there shouldn’t be any way for the login to fail, but it is still good practice. You
use the logout action to remove the user from the session, so he or she can log out. List-
ing 5-13 shows how you enhance the UserController.

Listing 5-13. Enhanced UserController

class UserController {

def scaffold = User

def login = {}

def handleLogin = {

def user = User.findByUserName(params.userName)

if (!user) {

flash.message = "User not found for userName: ${params.userName}"

redirect(action:'login')

CHAPTER 5 ■ BUILDING THE USER INTERFACE 125

10450_ch05.qxd 5/20/08 10:38 PM Page 125

}

session.user = user

redirect(controller:'todo')

}

def logout = {

if(session.user) {

session.user = null

redirect(action:'login')

}

}

}

Now, when the user logs in, he or she will be taken to the Todo List view when you log
in, and the topbar will contain the user’s first name, last name, and a Logout link. Line 8 in
Listing 5-5 shows how selecting the Logout link invokes the UserController logout action.

Now that you have written code, you must make sure that you don’t break it as you
make other enhancements. That’s next to impossible, but the next best thing is to steal an
idea from Six Sigma,7 Poka Yoke.8 Poka Yoke is a Japanese word that means mistake proofing.
The idea is to make mistakes so obvious that in effect, you prevent them. You accomplish
this by creating tests. The next section will help you write tests for the code you just wrote.

Testing
Grails uses two popular testing frameworks—JUnit9 and Canoo10—to implement unit
tests, integration tests, and functional tests. The purpose of testing is to verify that the
application works as expected and to confirm that you haven’t broken the application as
you iterated over it. It is extremely valuable to have a good test framework.

In this section, you’ll use JUnit to perform integration testing on the UserController,
and you’ll use Canoo to perform functional testing on the presentation. First, you will
create a JUnit integration test for the UserController handleLogin and logout actions. Then
you will create a test using the Canoo WebTest plug-in to functionally test the topbar.

■Note Purists may suggest that you should have written the tests before you wrote the code. This has
merit, but for the purposes of this book, it was more straightforward to show the code first. The important
thing is that you have good tests that give you faith that the application works as intended.

CHAPTER 5 ■ BUILDING THE USER INTERFACE126

7. http://en.wikipedia.org/wiki/Six_Sigma

8. http://en.wikipedia.org/wiki/Poka-yoke

9. http://www.junit.org

10. http://webtest.canoo.com

10450_ch05.qxd 5/20/08 10:38 PM Page 126

http://en.wikipedia.org/wiki/Six_Sigma
http://en.wikipedia.org/wiki/Poka-yoke
http://www.junit.org
http://webtest.canoo.com

Integration Testing Using JUnit

In Chapter 4, when you ran the grails create-controller command to create the
UserController, the command not only created the controller, but it also created an
empty test in the test/integration test directory. Take a peek in the test/integration
directory, and you’ll see UserControllerTests.groovy. Listing 5-14 shows you the contents
of the test when first generated.

Listing 5-14. UserControllerTests.groovy

class User ControllerTests extends GroovyTestCase

{

void testSomething() {

}

}

■Note If UserControllerTests.groovy doesn’t exist for some reason, you can create it by executing
grails create-integration-test and specifying UserController when prompted.

As you can see, a Grails test extends/inherits from GroovyTestCase,11 which in turn
extends from junit.framework.TestCase.12 This means that Grails tests have all the fea-
tures of JUnit and GroovyTestCase, including all the standard JUnit assert*, setUp, and
tearDown methods and Groovy assert methods.

It is important to understand the distinction between integration and unit tests.
A unit test is created with the grails create-unit-test command and results in a skeleton
unit test in the tests/unit directory. One of the interesting things about Grails unit tests is
that Grails dynamic methods, such as save, delete, and findBy*, are not available. Grails
does this to help you understand the difference between unit tests and integration tests.
The purpose of a unit test is to test the logic in a piece of code, not how the code and
everything else around it (e.g., the database) interact—that is the purpose of integration
tests. Right about now, you might be saying, “It’s going to be awfully hard for me to test
the logic in the code if I can’t use dynamic methods.” This is where Groovy’s MockFor* and
StubFor* methods come to your aid.

You’re going to test the UserController handleLogin and logout actions using an inte-
gration test. Take a look at Listing 5-13, which contains the logic you want to test. The
handleLogin action tries to find the user using the userName. If it finds the user, it adds the

CHAPTER 5 ■ BUILDING THE USER INTERFACE 127

11. http://groovy.codehaus.org/api/groovy/util/GroovyTestCase.html

12. http://junit.sourceforge.net/javadoc/junit/framework/TestCase.html

10450_ch05.qxd 5/20/08 10:38 PM Page 127

http://groovy.codehaus.org/api/groovy/util/GroovyTestCase.html
http://junit.sourceforge.net/javadoc/junit/framework/TestCase.html

user object to the session, and the user is redirected to the Todo List view. If it doesn’t find
the user, it redirects the user to the login view. The logout action removes the user object
from the session, and the user is redirected to the login view. You need two tests—one
positive (a login with a valid user) and one negative (a login with an invalid user)—for
handleLogin and one test for logout. Listing 5-15 contains the tests.

Listing 5-15. UserController Integration Test

01 class UserControllerTests extends GroovyTestCase {

02

03 User user

04 UserController uc

05

06 void setUp() {

07 // Save a User

08 user = new User(userName:"User1", firstName:"User1FN", lastName:"User1LN")

09 user.save()

10

11 // Set up UserController

12 uc = new UserController()

13 }

14

15 void tearDown() {

16 user.delete()

17 }

18

19 /**

20 * Test the UserController.handleLogin action.

21 *

22 * If the login succeeds, it will put the user object into the session.

23 */

24 void testHandleLogin() {

25

26 // Setup controller parameters

27 uc.params.userName = user.userName

28

29 // Call the action

30 uc.handleLogin()

31

32 // If action functioned correctly, it put a user object

33 // into the session

34 def sessUser = uc.session.user

CHAPTER 5 ■ BUILDING THE USER INTERFACE128

10450_ch05.qxd 5/20/08 10:38 PM Page 128

35 assert sessUser

36 assertEquals("Expected ids to match", user.id, sessUser.id)

37 // And the user was redirected to the Todo Page

38 assertEquals "/todo", uc.response.redirectedUrl

39 }

40

41 /**

42 * Test the UserController.handleLogin action.

43 *

44 * If the login fails, it will redirect to login and set a flash message.

45 */

46 void testHandleLoginInvalidUser() {

47 // Setup controller parameters

48 uc.params.userName = "INVALID_USER_NAME"

49

50 // Call the action

51 uc.handleLogin()

52 assertEquals "/user/login", uc.response.redirectedUrl

53 def message = uc.flash.message

54 assert message

55 assert message.startsWith("User not found")

56 }

57

58 /**

59 * Test the UserController.login action

60 *

61 * If the logout action succeeds, it will remove the user object from

62 * the session.

63 */

64 void testLogout() {

65 // make it look like user is logged in

66 uc.session.user = user

67

68 uc.logout()

69 def sessUser = uc.session.user

70 assertNull("Expected session user to be null", sessUser)

71 assertEquals "/user/login", uc.response.redirectedUrl

72 }

73 }

If you have used JUnit before, this will look familiar. Lines 3–17 contain the test setup
and teardown functionality. The setup runs before each test, and the teardown runs after

CHAPTER 5 ■ BUILDING THE USER INTERFACE 129

10450_ch05.qxd 5/20/08 10:38 PM Page 129

each test. The only interesting thing to point out here is that lines 9 and 16 use dynamic
methods.

Lines 24–39 contain the handleLogin action positive test. The action takes userName
as a parameter. Line 27 adds user.userName to the parameters to be passed to the action.
Line 30 calls the handleLogin action using the parameters you just defined. Lines 34–36
validate that the action set the user into the session. If you look closely, you’ll see that the
test uses the Groovy assert and the JUnit assertEquals. In Groovy, assert considers null
to be false. If the user wasn’t put in the session, assert would fail. Line 38 looks in the
UserController response to validate that the user was redirected to the Todo List view.

Lines 46–56 contain the handleLogin action negative test and use an invalid userName.
As you might expect, lines 48–51 create an invalid username and call the action. Line 52
validates that the user is redirected to the proper view. Lines 53–55 validate that a flash
message was generated to tell the user that he or she was not logged in. We’ll cover flash
messages in more detail shortly in the “Flash and Flash Messages” section.

Lines 64–71 contain the logout action test. Lines 66–68 manually add the user to the
session and call the action. Lines 69 and 70 validate that the session doesn’t contain a
user object. Line 71 validates that the user is redirected to the login view.

Now for some fun. You run all the tests with the grails test-app command, and you
run individual tests by appending the test name, as shown here:

grails test-app UserController

The command executes the UserControllerTest and produces the following output:

Running 3 Integration Tests...

Running test UserControllerTests...

testHandleLogin...SUCCESS

testHandleLoginInvalidUser...SUCCESS

testLogout...SUCCESS

Integration Tests Completed in 2110ms

[junitreport] Transform time: 719ms

Tests passed. View reports in <<PROJECT>>/test/reports

As you can see, everything passed. The test also generated a JUnit report under the
test/reports directory. Figure 5-9 shows the JUnit HTML report.

CHAPTER 5 ■ BUILDING THE USER INTERFACE130

10450_ch05.qxd 5/20/08 10:38 PM Page 130

Figure 5-9. JUnit report

Now you have some confidence that when you change code, you can make sure the
handleLogin and logout actions function correctly. Now that you know that your actions
are working individually, you need to create a test to verify that the topbar renders cor-
rectly when the user logs in.

■Note As a side project, you could take a look at continuous integration (CI) tools13 and have the system
execute your tests automatically. For more information, check out Martin Fowler’s article.14

Functional Testing Using Canoo WebTest

If you recall, when the user first comes to the page, the topbar displays a link for the user
to log in. Once the user has logged in, the topbar displays a link to log out. When you
were testing manually, you had to add the user to the system, log in, and then check to
make sure the topbar displayed the user’s name. While this isn’t a lot of work, do you
really want to do this manually every single time you enhance the application? We hope
the answer is no. Instead, you can create a suite of functional tests and let the computer
do the regression testing of the presentation. All you have to do is kick it off or add it to
your CI environment.

Grails has a Canoo WebTest plug-in, thanks to Dierk Koenig, founder and project
manager of the Canoo WebTest plug-in. Canoo WebTest is a free open source tool that

CHAPTER 5 ■ BUILDING THE USER INTERFACE 131

13. http://en.wikipedia.org/wiki/Continuous_integration

14. Martin Fowler, “Continuous Integration,” http://martinfowler.com/articles/
continuousIntegration.html, 2006.

10450_ch05.qxd 5/20/08 10:38 PM Page 131

http://en.wikipedia.org/wiki/Continuous_integration
http://martinfowler.com/articles

allows you to create functional tests. You start by installing the Canoo WebTest plug-in,
then you generate and code a functional test for the user CRUD operations. Next, you
create a functional test by hand to test the topbar functionality.

Install the WebTest plug-in by executing grails install-plugin webtest. Grails down-
loads the plug-in and installs it under the application’s plugins directory. Next, generate
a functional test by executing grails create-webtest. Grails first creates a webtest directory
in the current project, then it creates a configuration file (webtest/conf/webtest.properties)
and a test suite (webtest/tests/testsuite.groovy).

When prompted for a WebTest domain name, specify user. Grails uses WebTest tem-
plates to generate CRUD operation tests for the user object. Under normal circumstances,
you shouldn’t have to change the WebTest configuration, but in case you do, check out
Table 5-11, which defines the contents of the configuration file.

Table 5-11. webtest.properties

Name Initial Value Description

webtest_host localhost The name of the host server

webtest_port 8080 The port number to start the test server
on

webtest_protocol http The protocol used to communicate with
the server

webtest_summary true Determines whether a summary report
should be printed

webtest_response true Determines whether a response should
be saved to view from the report

webtest_resultpath webtest/reports Determines where to put the reports

webtest_resultfile WebTestResult.xml Specifies the name of the report results
file

webtest_haltonerror false Determines whether execution should
be stopped if an error occurs

webtest_errorproperty webTestError Specifies the name of the Ant property to
set when an error occurs

webtest_haltonfailure false Determines whether execution should
be stopped if a failure occurs

webtest_failureproperty webTestFailure Specifies the name of the Ant property to
set when a failure occurs

webtest_showhtmlparseroutput true Determines whether to show parsing
warnings and errors in the terminal
window

CHAPTER 5 ■ BUILDING THE USER INTERFACE132

10450_ch05.qxd 5/20/08 10:38 PM Page 132

The other generated file, testsuite.groovy, uses Ant fileScanner to load all classes in
the webtest/tests directory that end with Test. It then executes them by calling their
suite method. When you first start an application, the default behavior is probably good
enough. As the application becomes more sophisticated, though, it may become neces-
sary to have more control over the order in which the functional tests are executed. You
can accomplish this by loading and executing the tests manually. Listing 5-16 shows an
example.

Listing 5-16. Loading and Executing a Functional Test Manually

new MyTest(ant:ant, configMap:configMap).suite()

new MyOtherTest(ant:ant, configMap:configMap).suite()

Now that WebTest is installed, you can start creating the functional test. When Grails
generates the WebTest, it does the best it can using a template. To make the test able to
run, you need to add test values to the test.

■Note Grails 0.6 featured a UI face-lift, which caused some challenges in the WebTest template. This may or
may not have been fixed by the time you read this. In either case, tweaking the test is pretty straightforward.

Listing 5-17 contains a simple functional test that validates the usage of the user
domain object through the presentation.

Listing 5-17. User WebTest

01 class UserTest extends grails.util.WebTest {

02

03 // Unlike unit tests, functional tests are often sequence dependent.

04 // Specify that sequence here.

05 void suite() {

06 testUserListNewDelete()

07 // add tests for more operations here

08 }

09

10 def testUserListNewDelete() {

11 webtest('User basic operations: view list, create new entry, view,

12 edit, delete, view'){

13 invoke(url:'user')

14 verifyText(text:'Home')

CHAPTER 5 ■ BUILDING THE USER INTERFACE 133

10450_ch05.qxd 5/20/08 10:38 PM Page 133

15

16 verifyListPage(0)

17

18 clickLink(label:'New User')

19 verifyText(text:'Create User')

20 clickButton(label:'Create')

21 verifyText(text:'Show User', description:'Detail page')

22 clickLink(label:'List', description:'Back to list view')

23

24 verifyListPage(1)

25

26 group(description:'edit the one element') {

27 clickLink(label:'Show', description:'go to detail view')

28 clickButton(label:'Edit')

29 verifyText(text:'Edit User')

30 clickButton(label:'Update')

31 verifyText(text:'Show User')

32 clickLink(label:'List', description:'Back to list view')

33 }

34

35 verifyListPage(1)

36

37 group(description:'delete the only element') {

38 clickLink(label:'Show', description:'go to detail view')

39 clickButton(label:'Delete')

40 verifyXPath(xpath:"//div[@class='message']",

41 text:/User.*deleted./, regex:true)

42 }

43

44 verifyListPage(0)

45

46 } }

47

48 String ROW_COUNT_XPATH = "count(//td[@class='actionButtons']/..)"

49

50 def verifyListPage(int count) {

51 ant.group(description:"verify User list view with $count row(s)"){

52 verifyText(text:'User List')

53 verifyXPath(xpath:ROW_COUNT_XPATH, text:count,

54 description:"$count row(s) of data expected")

55 } }

56 }

CHAPTER 5 ■ BUILDING THE USER INTERFACE134

10450_ch05.qxd 5/20/08 10:38 PM Page 134

xpath:"//div[@class=

Use the grails run-webtest command to run the test and see what happens. When
the test completes, it shows you the results in your default browser. Figure 5-10 is an
example of what you’ll see.

Figure 5-10. WebTest results

Looking at the results, you can see that the test failed. In the WebTests section of the
report, you can see that zero tests passed (shown by the green check mark) and one test
failed (shown by the red X). In the Steps section of the report, you can see that six steps
passed (green check mark), one step failed (red X), and six steps were not executed (shown
by the yellow o). Some steps failing can be expected, because Grails generates a skeleton
implementation that you need to fill in. If you scroll down in the browser, you’ll see more
information about where it failed. The test failed in step 7, where the test verifies the text
“Show User.” Take a look at line 21 of Listing 5-17. The step failure means that it wasn’t able
to find the text “Show User” on the page. Most likely, something right before this didn’t
work as anticipated. Let’s review the test.

■Tip Because the meanings of WebTest commands are pretty clear, you can follow along and execute the
same commands in a browser. It’s almost like a checklist.

The core of the test starts on line 13. Lines 13–14 invoke the user URL, http://localhost:
8080/collab-todo/user, and verify that the page contains the word “Home.” Line 16 calls a
method to verify that the page contains no items in the list.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 135

10450_ch05.qxd 5/20/08 10:38 PM Page 135

http://localhost:

■Note If you take a look at the verifyListPage method, you’ll see that it’s using XPath expressions to
count the number of entries in the list. Learn more about XPath on the W3Schools site.15

Lines 18–19 select the New User link and verify that the page contains the text “Create
User.” Line 20 selects the Create link. If you don’t input anything in the User Name, First
Name, or Last Name fields and you select the Create link, a flash message will appear
telling you that the information is required. That’s why line 21 failed. To fix the test, insert
the code shown in Listing 5-18 right after line 20.

Listing 5-18. Setting Input Fields

// Set Inputs Start

setInputField(name:'userName', 'User1')

setInputField(name:'firstName', 'User1FN')

setInputField(name:'lastName', 'User1LN')

// Set Inputs End

This is how you insert values into the User Name, First Name, or Last Name fields
using WebTest. Rerun the WebTest and take a look at the results.

■Caution At the time of this writing, the template used to generate the WebTest wasn’t integrated with
the new look and feel of Grails. As a result, you may experience some additional errors. The errors are easier
to resolve if you follow along with the test in your browser and then go to View ➤ View Source in the
browser to see the resulting HTML. Doing so will give you an idea of how you can modify the test.

Now you can build upon what you have learned to create a WebTest for the topbar
functionality.

The grails create-webtest command assumes that you are creating a WebTest for
a domain object. The topbar isn’t a domain object, so you need to create the topbar test
by hand. You can use the UserWebTest (webtest/tests/UserTest.groovy) as a guide.

Create TopBarTest.groovy in the webtest/test directory. Make sure webtest/tests/
TopBarTest extends grails.util.WebTest, and be sure to include the suite method. You
need to follow these steps to test the topbar:

CHAPTER 5 ■ BUILDING THE USER INTERFACE136

15. W3Schools, “XPath Tutorial,” http://www.w3schools.com/xpath/.

10450_ch05.qxd 5/20/08 10:38 PM Page 136

http://www.w3schools.com/xpath

1. Create a user.

2. Log in.

3. Verify the topbar.

4. Log out.

5. Delete the user.

You could do all of the steps in one test method, but it makes more sense to divide
them up into separate tests and use the suite method to control the sequence in which the
tests are executed. A logical breakup would be testCreateNewUser, testLoginTopBarLogout,
and testDeleteUser. Listing 5-19 contains an implementation of the WebTest to test the
topbar.

Listing 5-19. WebTest to Test the Topbar

class TopBarTest extends grails.util.WebTest {

// Unlike unit tests, functional tests are often sequence dependent.

// Specify that sequence here.

void suite() {

testCreateNewUser()

testLoginTopBarLogout()

testDeleteUser()

}

/**

* Create the user that will be used in the login

*/

def testCreateNewUser() {

webtest('Test TopBar: create new user'){

invoke(url:'user')

verifyText(text:'Home')

clickLink(label:'New User')

verifyText(text:'Create User')

// Set Inputs Start

setInputField(name:'userName', 'User1')

setInputField(name:'firstName', 'User1FN')

CHAPTER 5 ■ BUILDING THE USER INTERFACE 137

10450_ch05.qxd 5/20/08 10:38 PM Page 137

setInputField(name:'lastName', 'User1LN')

// Set Inputs End

clickButton(label:'Create')

}

}

/**

* Login, look for name on TopBar, and log out

*/

def testLoginTopBarLogout() {

webtest('Test TopBar: login, verify topbar, logout'){

invoke(url:'user/login')

verifyText(text:'Login below')

setSelectField(name:'userName', value:'User1')

clickButton(label:'Login')

// after login should be on the todo view

verifyText(text:'Todo List')

// look for topbar information

verifyText(text:'User1FN')

verifyText(text:'User1LN')

verifyText(text:'Logout')

// logout

clickLink(label:'Logout')

// should be on the login view

verifyText(text:'Login below')

}

}

/**

* Clean up after ourselves, delete the user we added.

*/

def testDeleteUser() {

webtest('Test TopBar: delete user'){

invoke(url:'user')

verifyText(text:'Home')

// delete the first user.

clickElement(xpath:'//td/a',description:'go to detail view')

clickButton(label:'Delete')

// Handle the javascript popup

expectDialog(dialogType:'confirm', response:'true', description:

'Are you sure')

CHAPTER 5 ■ BUILDING THE USER INTERFACE138

10450_ch05.qxd 5/20/08 10:38 PM Page 138

xpath:'//td/a

verifyText(text:'Home')

verifyText(text:'User List')

}

}

}

Listing 5-19 almost reads like a checklist of instructions that you would have to give
someone to test it manually. Verify that the test works as expected by running the
WebTest.

You now have a testing framework. You created integration tests on the handleLogin
and logout actions of the UserController. You also created a functional test for the user
domain object using the generated templates and a custom functional test for the topbar.
The best source for help with WebTest is the Canoo WebTest manual,16 which contains
some good examples. Translating the information in the manual to a Groovy implemen-
tation is straightforward.

■Note Throughout the rest of the book, we will assume that you’re maintaining tests and creating new
tests for every enhancement you make. Periodically, we will revisit testing to focus on a particular aspect,
tip, or gotcha that is related to the topic being covered.

Externalizing Strings
Like all modern Java web frameworks, Grails supports the concept of message bundles. It
uses the <g:message> tag to look up a properties file for the text to be displayed. For exam-
ple, say you’re having a difficult time deciding if the topbar should say “Login” or “Sign
In.” You could externalize the string and just change the messages.properties file when-
ever you change your mind. Grails uses the message bundles to display errors. So, if you
don’t like the error message you’re getting back, you can make it friendlier by modifying
the message in the message bundle. The messages.properties file is located in the grails-app/
i18n directory. Listing 5-20 shows the default contents of the messages.properties file.

Listing 5-20. messages.properties

default.doesnt.match.message=Property [{0}] of class [{1}] with value [{2}] does \

not match the required pattern [{3}]

default.invalid.url.message=Property [{0}] of class [{1}] with value [{2}] is not \

a valid URL

CHAPTER 5 ■ BUILDING THE USER INTERFACE 139

16. http://webtest.canoo.com/webtest/manual/manualOverview.html

10450_ch05.qxd 5/20/08 10:38 PM Page 139

http://webtest.canoo.com/webtest/manual/manualOverview.html

default.invalid.creditCard.message=Property [{0}] of class [{1}] with value [{2}] \

is not a valid credit card number

default.invalid.email.message=Property [{0}] of class [{1}] with value [{2}] is \

not a valid e-mail address

default.invalid.range.message=Property [{0}] of class [{1}] with value [{2}] \

does not fall within the valid range from [{3}] to [{4}]

default.invalid.size.message=Property [{0}] of class [{1}] with value [{2}] does \

not fall within the valid size range from [{3}] to [{4}]

default.invalid.max.message=Property [{0}] of class [{1}] with value [{2}] \

exceeds maximum value [{3}]

default.invalid.min.message=Property [{0}] of class [{1}] with value [{2}] is \

less than minimum value [{3}]

default.invalid.max.size.message=Property [{0}] of class [{1}] with value \

[{2}] exceeds the maximum size of [{3}]

default.invalid.min.size.message=Property [{0}] of class [{1}] with value \

[{2}] is less than the minimum size of [{3}]

default.invalid.validator.message=Property [{0}] of class [{1}] with value

[{2}] does not pass custom validation

default.not.inlist.message=Property [{0}] of class [{1}] with value [{2}] is \

not contained within the list [{3}]

default.blank.message=Property [{0}] of class [{1}] cannot be blank

default.not.equal.message=Property [{0}] of class [{1}] with value [{2}] \

cannot equal [{3}]

default.null.message=Property [{0}] of class [{1}] cannot be null

default.not.unique.message=Property [{0}] of class [{1}] with value [{2}] \

must be unique

default.paginate.prev=Previous

default.paginate.next=Next

Let’s go back to the topbar WebTest example to demonstrate how to externalize strings.
Take a look at Listing 5-5 to see the current topbar template. Change lines 5 and 8 to use the
<g:message> tags. When completed, the topbar template should look something like what’s
shown in Listing 5-21.

Listing 5-21. Topbar Template with Messages

<div id="menu">

<nobr>

<g:if test="${session.user}">

${session.user?.firstName} ${session.user?.lastName} |

CHAPTER 5 ■ BUILDING THE USER INTERFACE140

10450_ch05.qxd 5/20/08 10:38 PM Page 140

<g:link controller="logout"><g:message code="topbar.logout" /></g:link>

</g:if>

<g:else>

<g:link controller="login" action="auth">

<g:message code="topbar.login" /></g:link>

</g:else>

</nobr>

</div>

Now just add topbar.logout and topbar.login to the messages bundle:

topbar.login=Login

topbar.logout=Logout

You can easily change the text to display whatever you want without modifying the
GSP. You still have to be careful, though. Depending upon how you modify the text associ-
ated with the message code, you may have to adjust the WebTest if it is looking for specific
text. In a sophisticated application, you will have to make some decisions about func-
tional testing. You need to ask yourself, “Should the functional test be run against a single
locale or multiple locales?” If you decide on multiple locales, you will have to write a more
robust functional test and pay particular attention to the usage of verifyText.

If you’re an experienced web developer, you won’t be surprised to find out that using
the <g:message> tag also starts you on the path of internationalizing the application. The
<g:message> tag is locale-aware; the i18n in the directory name to the messages.property
file is a giveaway. By default, the tag uses the browser’s locale to determine which mes-
sage bundle to use.

Now that you understand message bundles, you can change the default messages
displayed to something user friendly when errors occur.

Errors and Validation
In this section, you’ll learn the difference between errors and flash messages, and you’ll
discover how to customize the messages.

If you try to submit a user form without entering a username, you will see error mes-
sages in action. When you violate a domain object’s constraints, the red text that you see
is an example of an error message. Figure 5-11 shows an example.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 141

10450_ch05.qxd 5/20/08 10:38 PM Page 141

Figure 5-11. Error message

This screen shows the default error messages. As you saw previously in Listing 5-20,
you can customize the message using the messages.properties file located in the grails-app/
i18n directory. To get a better understanding of how this works, you need to switch the
views and the controller from dynamic scaffolding to static scaffolding. Grails generates
dynamic scaffolding on the fly when the application starts. If Grails can generate the code
at runtime, it makes sense that it can generate the code at development time so you can
see it. The generated code is called static scaffolding. Take a precaution against losing the
existing implementation of the UserController by making a backup copy.

You can create the views for the User domain object by executing the command grails
generate-views User. The command uses Grails templates to generate four new GSP pages
in the grails-app/views/user directory: create.gsp, edit.gsp, list.gsp, and show.gsp. Now
you need to create static scaffolding for the controller. You can create the controller for the
User domain object by executing the command grails generate-controller User. Grails
will detect that you already have an implementation of the controller and ask for permis-
sion to overwrite it. Give it permission; this is why you made a backup copy. After the
UserController is generated, you need to copy the login, handleLogin, and logout actions
from the backup to the newly generated controller. Listing 5-22 contains the contents of
the save action.

CHAPTER 5 ■ BUILDING THE USER INTERFACE142

10450_ch05.qxd 5/20/08 10:38 PM Page 142

Listing 5-22. The UserController.save Action

01 def save = {

02 def user = new User()

03 user.properties = params

04 if(user.save()) {

05 flash.message = "User ${user.id} created."

06 redirect(action:show,id:user.id)

07 }

08 else {

09 render(view:'create',model:[user:user])

10 }

11 }

The save action is called when the user clicks the Create button from the New User
view. When line 4 is executed, Grails validates the user constraints before attempting to
persist the user in the database. If validation succeeds, the user is redirected to the Show
User view with the message “User ${user.id} created.” If the save fails, the Create User
view is rendered so that you can correct the validation errors without losing the previous
input. When validation fails, Grails inserts an error message in the user object’s meta-
data, and the user object is passed as a model object to the view. When the Create User
view is rendered, it checks to see if there are any errors and displays them if appropriate.
Listing 5-23 contains a short snippet that shows how to display the errors.

Listing 5-23. Display Errors

<g:hasErrors bean="${user}">

<div class="errors">

<g:renderErrors bean="${user}" as="list" />

</div>

</g:hasErrors>

As you can see, the generated GSP uses the <g:hasErrors> and <g:renderErrors> tags
to detect and display the errors. The <g:hasErrors> tag uses the bean attribute to detect
errors in the user object. If errors are detected, the body of the tag is evaluated, which
results in the error being displayed by the <g:renderErrors> tag. The <g:renderErrors> tag
iterates through the errors in the user object and displays them as a list. The display
process knows that it is receiving an error code and error attributes. The tag looks up the
error code in the message bundle, and the attributes are substituted in the message before
it is displayed.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 143

10450_ch05.qxd 5/20/08 10:38 PM Page 143

This technique works because the page is rendered from the controller. Take
another look at line 6 in Listing 5-22. In the case of a redirect, the controller instructs
the browser to go to the Show User view. The browser does this by calling the show
action on the UserController. The controller then executes the show action and renders
show.gsp. With all of this back and forth between the controller and the browser, can
you imagine what it would take to make sure that all of the message information stays
intact so it can be displayed by show.gsp? Well, this is where flash messages come to
your rescue.

Flash and Flash Messages
What is flash scope and why do you need it? The short answer is that it is a technique
implemented by Grails to make passing objects across redirects much easier. In other
words, it addresses the problem described at the end of the previous section.

Figure 5-12 illustrates the problems associated with normal techniques of passing
information from the controller to the view when a redirect is involved.

Figure 5-12. Redirect problem

Client Request UserController

Save User

Save User

request.message=
User Created

request.message=
null

Redirect to Show View

Upon saving the user, redirect the
user to the Show view with the
message User Created.

Show User

Show User
The request parameter is handed
off for processing by show.gsp.
However, because this is a new
request, the message is blank and
evaluates to null, and there is
nothing to be displayed.

Show View

= =

CHAPTER 5 ■ BUILDING THE USER INTERFACE144

10450_ch05.qxd 5/20/08 10:38 PM Page 144

On a redirect, if you try to use the request to carry the message to the Show view, the
message gets lost when the browser receives the redirect. Another option would be to stick
the message in the session and have the Show view pick it up from the session. However,
in the Show view, you have to remember to delete the message from the session once it
has been displayed; otherwise, the same message might be displayed on multiple views.
The problem with this approach is that it depends upon you doing the right thing, and it’s
tedious.

This is where Grails comes to the rescue: it takes the last option and implements it
for you and makes it part of the Grails framework. This is the flash scope. The flash scope
works just like the other scopes17 (application, session, request, and page) by operating
off a map of key/value pairs. It stores the information in the session and then removes it
on the next request. Now you don’t have to remember to delete the object in the flash
scope. Figure 5-13 illustrates the concept of the flash scope.

Figure 5-13. Flash scope

Client Request UserController

Save User

Save User

flash.message=
"User Created"

Redirect to Show View

Show User

Show User

Show View

Session Flash

Upon saving the user, redirect the
user to the Show view and put
message "User Created " in flash scope.

Put in Flash

Get Flash

Flash

flash.message=
"User Created"

The request parameter is handed
off for processing by show.gsp.
Grails checks to see if there is
anything in the flash scope; if there
is, it pulls it out for processing.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 145

17. http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
web-tier/web-tier5.html#1079198

10450_ch05.qxd 5/20/08 10:38 PM Page 145

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e

The Show view can access the flash scope objects—a message, in this case—and dis-
play them using the tags and techniques illustrated in Listing 5-24.

Listing 5-24. Access and Display a Flash Message

<g:if test="${flash.message}">

<div class="message">${flash.message}</div>

</g:if>

Grails isn’t the only modern web framework that implements this technique. Ruby on
Rails (RoR) developers should find this familiar.

Accessing a message from a flash scope looks pretty easy, but how do you put a mes-
sage in flash? Listing 5-25 illustrates how the save action on the UserController puts a
message into the flash scope.

Listing 5-25. Putting a Message in the Flash Scope

. . .

if(user.save()) {

flash.message = "User ${user.id} created."

redirect(action:show,id:user.id)

}

...

Grails implements a flash scope using a map. In this case, message is the key, and
"User ${user.id} created." is the value.

What if you need to internationalize the code or want to change the message without
editing the GSP? (Currently, the message is essentially hard-coded.) You can set it up to
use message bundles just like errors do. Earlier in the chapter, you used the <g:message>
tag to pull error messages from message bundles. You can do the same thing for flash
messages using a couple of attributes. Listing 5-26 illustrates how to use the <g:message>
tag to display flash messages.

Listing 5-26. Using the <g:message> Tag to Display a Flash Message

<g:message code="${flash.message}" args="${flash.args}"

default="${flash.defaultMsg}"/>

Listing 5-27 illustrates the enhancements to the save action to set the values that the
message tag will use.

CHAPTER 5 ■ BUILDING THE USER INTERFACE146

10450_ch05.qxd 5/20/08 10:38 PM Page 146

Listing 5-27. Setting Values in a Flash Scope for Use by the <g:message> Tag

...

if(user.save()) {

flash.message = "user.saved.message"

flash.args = [user.firstName, user.lastName]

flash.defaultMsg = "User Saved"

redirect(action:show,id:user.id)

}

...

The flash.message property is the message code to be looked up in the message
bundle, flash.args are the arguments to be substituted into the message, and
flash.defaultMsg is a default message to display in the event of a problem.

Only one thing left to do: create an entry in the message bundle with the
user.saved.message code and whatever you would like the text to be. See Listing 5-28
for an example.

Listing 5-28. Flash Message Code Example

user.saved.message=User: {0} {1} was saved

The results should look something like what’s shown in Figure 5-14.

Figure 5-14. Customized flash message

CHAPTER 5 ■ BUILDING THE USER INTERFACE 147

10450_ch05.qxd 5/20/08 10:38 PM Page 147

■Note Any action can call or redirect to the Show view. At this point, you may be wondering what happens
if flash.args and flash.defaultMsg aren’t set. The <g:message> tag is pretty smart; it does the logical
thing. It displays the contents of flash.message. To see it in action, update an existing user and take a look
at the message displayed.

Now that you know about the flash scope and messages, you can create customized
and internationalized application messages with a minimal investment.

You have learned quite a bit about Grails user interfaces and have established the
basic look and feel. Now it’s time to start implementing some logic and control.

Controlling the Application
The application has the ability to create users, log in as a user, log out, and even create
categories and to-do items. However, if you spend some time playing around with multi-
ple users, you’ll discover that users can modify and delete each other’s information.
That’s not good.

Controlling Users

In this section, you will modify the controllers to prevent user 1 from accidentally chang-
ing user 2’s information, and you’ll add a simple audit log using an interceptor. Let’s start
with the user information. It is not a problem for users to see each other’s user details, but
they shouldn’t be able to change them or delete another user.

Let’s analyze the problem for a second. You might take a UI-centric approach, and in
the GSP, just don’t show the link to edit the user unless the ID of the current user is the
same as the ID being displayed. If everyone in the world were trustworthy, that might
work, but it has some serious flaws.18 For example, a large system might have multiple
places that implement the logic you’re trying to guard against. A controller/action-centric
approach is a better answer and probably sufficient for a simple application. Centralizing
the authorization check in the controller/action has the benefit of guarding the update
logic no matter how it is called.

■Note The UI approach might still be worthwhile from a user experience perspective, but you should never
use it as a replacement for the more centralized controller/action approach. The two approaches are not
mutually exclusive; you can use them together.

CHAPTER 5 ■ BUILDING THE USER INTERFACE148

18. You will learn more about security in Chapter 7.

10450_ch05.qxd 5/20/08 10:38 PM Page 148

Listing 5-29 contains the default implementation of the edit action.

Listing 5-29. The edit Action

def edit = {

def user = User.get(params.id)

if(!user) {

flash.message = "User not found with id ${params.id}"

redirect(action:list)

}

else {

return [user : user]

}

}

As you can see, the edit action retrieves the user to be edited based upon params.id.
In this case, params.id is the ID of the user to be edited. If the user ID to be edited isn’t the
same as the currently logged-in user, then the user should be returned to the User List
view and view a message that states, “You can only edit yourself.” You can accomplish
this by changing the implementation of the edit action to match Listing 5-30. Don’t for-
get that when a user logs into the application, that user is put into the session.

Listing 5-30. The edit Action with User Check

def edit = {

if (session.user.id != params.id) {

flash.message = "You can only edit yourself"

redirect(action:list)

return

}

def user = User.get(params.id)

if(!user) {

flash.message = "User not found with id ${params.id}"

redirect(action:list)

}

else {

return [user : user]

}

}

CHAPTER 5 ■ BUILDING THE USER INTERFACE 149

10450_ch05.qxd 5/20/08 10:38 PM Page 149

Make sure to include the return statement. Failure to do so will result in the action
continuing to process after the browser has been instructed to go to a different action.
As you can see, you use flash.message to make the error message available to the List
view. You should apply the same logic to the update and delete actions to prevent users
from updating or deleting a record other than their own. Let’s explore this action a little
deeper.

params is a mutable map of request parameters. The fact that it is mutable allows you
to add or modify request parameters. You can even pass them to other actions. You use
the dot dereference operator to access the value for the key id. This works well and is the
preferred method for accessing a map when the key is not an invalid identifier—in other
words, when it doesn’t have invalid characters such as dot or /. For special cases, you can
use the subscript operator to access params. Listing 5-31 illustrates using the subscript
operator. This technique is also useful when the key is not known until runtime (i.e.,
passed in as a variable).

Listing 5-31. Accessing Request Parameters Using the Subscript Operator

def user = User.get(params['id'])

This brings up an additional point of interest. Because params is a request parameter
map, you have been accessing request parameters in the controller actions. You might be
wondering, “How did the parameters get passed into the action?” Go to the User List view
and select a user to show. Now take a close look at your browser URL, which should look
something like the screen shown in Figure 5-15. The callouts aren’t part of the URL; they
are used to identify the different parts of the URL.

Figure 5-15. The URL

Remember that not everyone in the world is trustworthy. This is why it isn’t good
enough to just not show the link on the view. A mischievous person could type the URL
directly into the browser and bypass the view. Figure 5-16 illustrates passing additional
request parameters on the URL.

http://localhost:8080/collab-todo/user/show/1

Domain

Port Controller ID
Parameter

Action
Context

Path

CHAPTER 5 ■ BUILDING THE USER INTERFACE150

10450_ch05.qxd 5/20/08 10:38 PM Page 150

http://localhost:8080/collab-todo/user/show/1

Figure 5-16. Additional request parameters

Another interesting point in Listing 5-30 is the last return statement. In Grails, actions
can do many things, one of which is returning a model that is used by the view to display
information. A model is a map of key/value pairs. The return [user : user] statement
returns a Groovy map.19 This can be a little confusing. Grails leverages Groovy’s ability to
create a map using the [:] notation. The entry before the : is the key, and the entry after
the : is the value (i.e., [key:value]).

■Note Groovy provides an implicit return. The value returned is the value of the last statement in the
action/closure. For example, take a look at the show action on the UserController.

Listing 5-32 illustrates how show.gsp uses the information in the User object to display
the user’s name.

Listing 5-32. Using the User Object in a View

<tr class="prop">

<td valign="top" class="name">User Name:</td>

<td valign="top" class="value">${user.userName}</td>

</tr>

${user.userName} is accessing the model map by the user key and then accessing the
userName property from the value object. In this case, the value object is the User domain
object. You can think of this as ${modelMapKey.modelMapValue}.

Before you move on with the application, let’s take a look at some other actions in the
UserController. Listing 5-33 shows the implementation of the save action.

http://localhost:8080/collab-todo/user/show/1/key/value

Port Controller ID
Parameter

Domain Action
Additional

Parameters
Context

Path

CHAPTER 5 ■ BUILDING THE USER INTERFACE 151

19. http://groovy.codehaus.org/Collections#Collections-Maps

10450_ch05.qxd 5/20/08 10:38 PM Page 151

http://localhost:8080/collab-todo/user/show/1/key/value
http://groovy.codehaus.org/Collections#Collections-Maps

Listing 5-33. The UserController save Action

01 def save = {

02 def user = new User()

03 user.properties = params

04 if(user.save()) {

05 flash.message = "user.saved.message"

06 flash.args = [user.firstName, user.lastName]

07 flash.defaultMsg = "User Saved"

08 redirect(action:show,id:user.id)

09 }

10 else {

11 render(view:'create',model:[user:user])

12 }

13 }

Line 3 demonstrates a powerful feature of Grails called data binding. The save action
is typically called from the Create view. Taking a quick look at the user Create view will
help you understand how the save action works. The view is used to create users. In the
process of creating users, the view supports creating userName, firstName, and lastName
using a form component. When the form is submitted, userName, firstName, and lastName
are put in the parameters map. Line 3 sets the domain properties from the request
parameters. In Chapter 6, you will learn more about domain objects and properties; this
is just a preview.

Data binding is handy and saves lots of code. If you’re an experienced web developer,
go take a look at one of your existing applications to see how much effort it took to assign
form data to domain objects. As an aside, you can also use an overridden constructor to
assign the values (e.g., def user = new User(params)).

After assigning the domain object properties, the action attempts to save the object.
In the process of saving the object, it is validated. If the object passes validation and the
save succeeds, the user is redirected to the Show view, and the user.saved.message mes-
sage is displayed. If the save fails, the Create view is redisplayed, and the validation errors
are displayed.

Line 11 demonstrates using the render method to display the Create view and pass
the failed user object to the model. You may be asking, “Why would it pass the user back?”
The view uses the user object to repopulate the form so that the user can correct mistakes.
That’s great, and it saves a good deal of development effort too. But how does the view
know what failed in validation? We’ll cover this more in Chapter 6, but the short answer is
that Grails adds an error collection to the domain object. The view retrieves the error mes-
sages from the domain object.

CHAPTER 5 ■ BUILDING THE USER INTERFACE152

10450_ch05.qxd 5/20/08 10:38 PM Page 152

Let’s review some of what you have learned while restricting modification of user
information. You learned how to introduce logic into the edit, update, and delete actions
to prevent users from modifying information unless the users themselves are making the
change. You explored request parameters and the Grails URL when examining why the
check must be in the controller action. While you were looking at the UserController, you
also took a quick look at how information is passed back to the view in the form of a
model and how parameters are set into domain objects using data binding. You also had
a preview into Chapter 6’s discussion of domain object validation, and you learned that
when validation fails, the view can ask the domain object for the error messages. With
this information, you’re now ready to further enhance the application by controlling
what category and to-do information is displayed.

Controlling Categories

When the user navigates to the Category List view, all of the categories are displayed,
including other users’ categories. When a user is maintaining categories, having other
users’ categories in the list is just a distraction and provides no value. The goal is to take
what you just learned about controller actions and apply it to the Category controller. The
first step is to generate the category views and controller by executing the commands
grails generate-views Category and grails generate-controller Category. The second
task is to restrict the categories displayed in the List view by restricting the categories
returned from the list action. Listing 5-34 contains the contents of the list action before
you enhance it.

Listing 5-34. The list Action

01 def list = {

02 if(!params.max)params.max = 10

03 [categoryList: Category.list(params)]

04 }

Line 2 checks to see if the params map contains a key named max. If it doesn’t, the code
creates a new key/value pair in params, called max, with a value of 10. The dynamic method,
list, uses the max parameter to limit the number of categories returned. Line 3 calls the
dynamic method list on the category domain object and returns the results to the List
view. You will learn more about dynamic methods20 in Chapter 6. You need to make the
changes illustrated in Listing 5-35 to restrict categories to the currently logged-in user.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 153

20. http://www.grails.org/DomainClass+Dynamic+Methods#DomainClassDynamicMethods-list

10450_ch05.qxd 5/20/08 10:38 PM Page 153

http://www.grails.org/DomainClass+Dynamic+Methods#DomainClassDynamicMethods-list

Listing 5-35. Restricting the list Action

01 def list = {

02 if(!params.max)params.max = 10

03 def user = User.get(session.user.id)

04 [categoryList: Category.findAllByUser(user, params)]

05 }

Line 3 retrieves the current user based upon the user information in the session.
Line 4 finds all the categories for the user retrieved on line 3. Line 4 is an example of
using a dynamic finder method. You will learn about dynamic finder methods in Chap-
ter 6. When that application is run, you will see that the display now restricts the List
view to the currently logged-in user. Figure 5-17 illustrates the Create view.

Figure 5-17. Create view

Now that the category views are restricted to the currently logged-in user, having the
user displayed in any of the views is redundant. Removing the user selection component
is a two-step process. First, you need to remove it from the views (grails-app/views/
category/*.gsp), and default the user to the currently signed-on user when the save and
update actions are called. This process is straightforward, and I’ll leave it up to you. Let’s
focus on the second step, in which you default the user in the save and update actions.
Listing 5-36 highlights the enhancements to the save and update actions to enable
defaulting the users.

CHAPTER 5 ■ BUILDING THE USER INTERFACE154

10450_ch05.qxd 5/20/08 10:38 PM Page 154

Listing 5-36. Defaulting the User

def update = {

def category = Category.get(params.id)

if(session.user.id != category.user.id) {

flash.message = "You can only delete your own categories"

redirect(action:list)

return

}

def user = User.get(session.user.id);

if(category) {

category.properties = params

category.user = user

if(category.save()) {

flash.message = "Category ${params.id} updated."

redirect(action:show,id:category.id)

}

. . .

def save = {

def category = new Category()

category.properties = params

def user = User.get(session.user.id);

category.user = user

if(category.save()) {

flash.message = "Category ${category.id} created."

redirect(action:show,id:category.id)

}

else {

render(view:'create',model:[category:category])

}

}

Take a look at flash.message. This is a Groovy String, or GString.21 The ${} allows you
to insert an expression into a string. In this case, the value of category.id is inserted into
the string. Figure 5-18 shows the cleaned-up Create view.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 155

21. http://groovy.codehaus.org/Strings#Strings-GStrings

10450_ch05.qxd 5/20/08 10:38 PM Page 155

http://groovy.codehaus.org/Strings#Strings-GStrings

Figure 5-18. Cleaned-up Create view

The Category ID doesn’t provide any value. Remove it from the List and Show views.
The user experience is improved dramatically without the Category ID and User Name
fields on the views.

■Tip In the List view, the ID field has a link to show a specific category. Make sure that you move the link
to the category name; otherwise, you won’t be able to navigate to the Show view.

You should also apply the user check that you added to the UserController’s edit,
update, and delete actions to the CategoryController’s edit, update, and delete actions.
Additionally, you should apply the enhancement you made to the category controller and
view to the to-do controller and views. From this point forward, we’ll assume that you
have completed both exercises.

■Tip On the Todo domain object, the user owns to-do items. The property that represents the user is
owner.

Now that you have experience enhancing controllers, it’s time to learn about another
controller technique: action interceptors. You will use interceptors to construct a simple
audit log.

CHAPTER 5 ■ BUILDING THE USER INTERFACE156

10450_ch05.qxd 5/20/08 10:38 PM Page 156

Creating an Audit Log Using Action Interceptors
Occasionally, you’ll have problems with the application. When this happens, it is useful
to know the input and results of the actions being executed. This entails displaying the
inputs to the action before the action is executed and the results before control is passed
to the next step in the process. You could modify every action to print the inputs before
executing the body of the action and then again at the end of the action. However, that’s
way too much work and difficult to maintain.

Grails provides a mechanism called action interceptors that you can use to provide
the desired functionality. Experienced developers will see that this is similar to aspect-
oriented programming (AOP). If you aren’t familiar with AOP, you might be familiar with
servlet filter interceptors for servlets, which are similar. The good news is that Grails
makes it easier than either one of these.

■Note Ruby on Rails developers will recognize this as a Rails filter.

Grails provides before and after interceptors. You will use both to provide the audit
log functionality. You will use a before interceptor to log the userName, controller, action,
and input parameters. To accomplish this, you will add the beforeInterceptor closure to
the TodoController. Listing 5-37 is an example of the beforeInterceptor for you to add to
the controller.

Listing 5-37. beforeInterceptor

def beforeInterceptor = {

log.trace("${session?.user?.userName} Start action ${controllerName}

Controller.${actionName}() : parameters $params")

}

If defined and unless otherwise instructed, the beforeInterceptor is called just before
the action is invoked. Since it is a closure, it has full access to all of the controller proper-
ties as well as the request parameters. It uses logging (see the “Logging” sidebar) to output
the audit information. Notice that it’s using the ?. safe dereference operator. The safe
dereference operator checks to see if the current expression so far is null before evaluat-
ing the next portion of the expression. So, if session or user is null, userName will never be
accessed. This helps you avoid the infamous NullPointerException. beforeInterceptor
allows you to perform logic before an action is invoked, while afterInterceptor allows
you to perform logic after the action has executed. Listing 5-38 is an example of
afterInterceptor for you to add to the controller.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 157

10450_ch05.qxd 5/20/08 10:38 PM Page 157

Listing 5-38. afterInterceptor

def afterInterceptor = { model ->

log.trace("${session?.user?.userName} End action

${controllerName}Controller.${actionName}() : returns $model")

}

As you would expect, the afterInterceptor looks similar to the beforeInterceptor. The
one additional piece is the passing of the model object to the interceptor; this allows you
to output it to the audit log.

■Caution This implementation of audit logging is a potential security hole for sensitive data. If the param-
eters or model contain sensitive data, you will want to take extra care to filter it out before logging any audit
information.

beforeInterceptor and afterInterceptor are invoked for every action in the controller.
Suppose you didn’t want to invoke the audit log for every action. What if you didn’t want to
collect audit log information for the list action? You could write an if statement around
the log statement. That would work, and it would work well. Grails provides an additional
mechanism, called interceptor conditions, which allow interceptors to be applied condi-
tionally. Listing 5-39 is an example of the before and after interceptors using conditions to
exclude the list action from the audit log.

Listing 5-39. Before and After Interceptors with Conditions

def beforeInterceptor = [action:this.&beforeAudit,except:['list']]

def afterInterceptor = [action:{model ->this.&afterAudit(model)},

except:['list']]

def beforeAudit = {

log.trace("${session?.user?.userName} Start action

${controllerName}Controller.${actionName}() : parameters $params")

}

def afterAudit = { model ->

log.trace("${session?.user?.userName} End action

${controllerName}Controller.${actionName}() : returns $model")

}

CHAPTER 5 ■ BUILDING THE USER INTERFACE158

10450_ch05.qxd 5/20/08 10:38 PM Page 158

■Note The Definitive Guide to Grails shows you how to use action interceptors to build a simple security
framework.22

Using Filters
Filters23 are similar to action interceptors in that they give you the ability to execute logic
before and after an action. They differ from action interceptors in that they are more flex-
ible and can be used in situations other than actions. For example, you can define a filter
that applies across multiple controllers.

Let’s see how you can use filters to simplify the UserController. The UserController’s
edit, delete, and update actions all contain guard logic that allows users to edit only their
own user data. The actions contain logic similar to Listing 5-40.

Listing 5-40. User Modification Guard

. . .

if (session.user.id != params.id) {

flash.message = "You can only edit yourself"

redirect(action:list)

return

}

. . .

While the logic in Listing 5-40 isn’t complex, it would be repeated for each action that
requires a guard. You can use filters to extract and centralize the logic to a single location.
This may sound familiar to those of you who have worked with AOP. The basic idea is to
extract the logic to a central location and then configure when that logic should be applied.

In Grails, you extract the logic into a class ending with the name Filters.groovy and
place it in the grails-app/conf directory. Each filter is contained within a method that takes
parameters to define the scope of the filter, when it is applied. Listing 5-41 shows how you
would centralize the user modification logic.

Listing 5-41. Filter Scope

class UserFilters {

def filters = {

userModificationCheck(controller: 'user', action: '*') {

CHAPTER 5 ■ BUILDING THE USER INTERFACE 159

22. Graeme Rocher, The Definitive Guide to Grails (Berkeley, CA: Apress, 2006).

23. http://grails.org/Filters

10450_ch05.qxd 5/20/08 10:38 PM Page 159

http://grails.org/Filters

. . .

}

someOtherFilter(uri: '/user/*') { }

}

}

The userModificationCheck filter is scoped and applied to the UserController on all
actions. Another way of scoping the filter is to use a URL. You can see an example of this
option on the someOtherFilter filter.

Next, you need to determine if the filter should be applied before the action, after
the action, and/or afterView rendering. In this case, the goal is to determine if the person
using the system should be allowed to modify the user. This means the guard logic should
be applied before the edit, update, and delete actions. Listing 5-42 illustrates how to spec-
ify the before condition.

Listing 5-42. before Filter

class UserFilters {

def filters = {

userModificationCheck(controller: 'user', action: '*') {

before = {

. . .

}

}

}

}

Finally, you need to limit the guard logic to the edit, update, and delete actions. List-
ing 5-43 shows the complete userModificationFilter.

Listing 5-43. User Modification Filter

01 class UserFilters {

02 def filters = {

03 userModificationCheck(controller: 'user', action: '*') {

04 before = {

05 def currActionName = actionName

06 if (currActionName == 'edit' ||

07 currActionName == 'update' ||

08 currActionName == 'delete') {

09 String userId = session?.user?.id

10 String paramsUserId = params?.id

CHAPTER 5 ■ BUILDING THE USER INTERFACE160

10450_ch05.qxd 5/20/08 10:38 PM Page 160

11 if (userId != paramsUserId) {

12 flash.message = "You can only modify yourself"

13 redirect(action: 'list')

14 return false

15 }

16 }

17 }

18 }

19 }

20 }

Let’s review the new lines. Line 5 gets the current action. Remember, you should
apply the filter to the edit, update, and delete actions, as shown in lines 6–8.

Line 11 determines if the person attempting the modification—the logged-in user—
is modifying his or her own user record. If not, an appropriate flash message is created,
and the user is redirected to the UserController list action. Line 14 returns false to tell
Grails that it shouldn’t execute any other filters.

Now that you have the userModificationCheck filter, you can remove the redundant
guard code from the edit, update, and delete actions.

LOGGING

While everyone uses println from time to time, a more mature approach is to use logging. Grails con-
trollers are preconfigured with a log property. Each controller receives its own instance of org.apache.
commons.logging.log. Apache Commons Logging component24 is an abstraction that allows you to
plug in different logging packages. Grails comes prepackaged with log4j.25

The Apache Commons Logging abstraction provides the interface seen in the following code.

The org.apache.commons.logging.log Interface

public interface log {

void debug(java.lang.Object message)

void debug(java.lang.Object message, java.lang.Throwable t)

void error(java.lang.Object message)

void error(java.lang.Object message, java.lang.Throwable t)

void fatal(java.lang.Object message

void fatal(java.lang.Object message, java.lang.Throwable t

void info(java.lang.Object message)

CHAPTER 5 ■ BUILDING THE USER INTERFACE 161

24. http://commons.apache.org/logging

25. http://logging.apache.org/log4j

10450_ch05.qxd 5/20/08 10:38 PM Page 161

http://commons.apache.org/logging
http://logging.apache.org/log4j

void info(java.lang.Object message, java.lang.Throwable t)

void trace(java.lang.Object message)

void trace(java.lang.Object message, java.lang.Throwable t)

void warn(java.lang.Object message)

void warn(java.lang.Object message, java.lang.Throwable t)

boolean isDebugEnabled()

boolean isErrorEnabled()

boolean isFatalEnabled()

boolean isInfoEnabled()

boolean isTraceEnabled()

boolean isWarnEnabled()

}

Messages have a severity level. The possible severity levels (from least severe to most severe) are

• Trace

• Debug

• Info

• Warning

• Error

• Fatal

Since Grails version 0.6, logging is configured through the Config.groovy file found in the
grails-app/conf directory. By default, Grails is configured for info-level logging. To enable trace-level
debugging in the development environment, add the definitions found in the following code to the Con-
fig.groovy file.

Configure Development Environment Logging

environments {

development {

log4j {

logger {

grails.'app.controller'="trace,stdout"

grails.app="error,stdout"

CHAPTER 5 ■ BUILDING THE USER INTERFACE162

10450_ch05.qxd 5/20/08 10:38 PM Page 162

}

}

}

}

For more information on logging configuration, see the online log configuration documentation at
http://www.grails.org/Logging.

Summary
Views and controllers are broad and deep topics. We have used the construction of the
Collab-Todo wireframe and customization of the views and controllers to help you learn
about some of the more important aspects to these topics.

In the process of building the Collab-Todo application, you have learned how to use
layouts, templates, and CSS to build the wireframe. The wireframe was composed of top-
bar, header, content, sidebar, and footer components. Building the wireframe also exposed
you to some of the Grails tag libraries.

Once you built the wireframe, you learned how to build a temporary login facility that
allowed you to exercise the topbar login/logout functionality. Building the login facility
involved creating a customized view and customized actions on the UserController.

You used JUnit to write integration tests for the actions, and you used Canoo WebTest
to write functional tests for the application. Building the integration and functional tests
relieved you from manual testing every time you enhanced the application, and it allowed
you to focus on the next set of enhancements: externalizing strings to property files and
messages.

You also learned about errors, validation, and flash messages. This gave you insights
into how Grails renders errors and messages and how you can control them. You also
learned about the redirect message problem and how using flash-scoped messages
solves the problem.

Once you had the basic mechanics of the application down, your attention turned to
the user experience by restricting the information users were shown to the information
that was relevant to them. You accomplished this by enhancing the controller actions so
that they restricted the model information returned to the views to only the information
users were permitted to see. You learned about the URL and request parameters. Then
you enhanced the view by removing the ID and user fields from the category and to-do
views, and you enhanced the save and update actions to set the user information to the
currently logged-in user.

CHAPTER 5 ■ BUILDING THE USER INTERFACE 163

10450_ch05.qxd 5/20/08 10:38 PM Page 163

http://www.grails.org/Logging

You learned how to use interceptors for things like auditing. Finally, you created a
simple audit log using action interceptors and logging.

It’s important to remember that even though we covered a lot, there are even more
advanced things you can do with views and controllers. We’ll cover more of the advanced
topics in the coming chapters. The next step on your journey is to learn more about domain
models and services.

CHAPTER 5 ■ BUILDING THE USER INTERFACE164

10450_ch05.qxd 5/20/08 10:38 PM Page 164

Building Domains and Services

KING ARTHUR. The Lady of the Lake, her arm clad in the purest shimmering samite
held aloft Excalibur from the bosom of the water, signifying by divine providence
that I, Arthur, was to carry Excalibur. THAT is why I am your king.

DENNIS, interrupting. Listen, strange women lyin’ in ponds distributin’ swords is no
basis for a system of government. Supreme executive power derives from a mandate
from the masses, not from some farcical aquatic ceremony.

Just as King Arthur and his knights embarked on a quest to find the Holy Grail in Monty
Python and the Holy Grail, the next step in our discovery of Grails is to search for its very
heart and soul . . . or in Java terms, its domain. Those of you familiar with Ruby on Rails
and other web frameworks know the domain as a model. These synonymous terms are
most often used in conjunction with the objects that are persisted against the database.
Although the terms are interchangeable, for the purpose of this book, we will follow Grails’
(and Java’s) lead and refer to the domain.

You received your first taste of the domain in Chapter 4 when you learned how to
scaffold the application. In Chapter 5, we broke out a few of those controllers to show
actual calls against the domain. However, we didn’t dive too much into the functionality
of the domain. Well, here is where we take it up a notch. We’ll show you the full power of
Grails database persistence and explain all the options available to you. In addition, we’ll
discuss the idea of services—something that should be familiar to any enterprise devel-
oper. Unlike controllers, services don’t contain any specific web knowledge like sessions
and request parameters do.

GORM
We’ve shown you how to interact with the database, but we’ve left the process a bit nebu-
lous until now. In this chapter, we’ll go over the specifics behind how GORM works. Most
frameworks, especially those straight out of the box, have their own mechanism for per-
sisting to the database. Ruby on Rails uses ActiveRecord as the persistence mechanism.

165

C H A P T E R 6

10450_ch06.qxd 5/20/08 10:41 PM Page 165

Java EE frameworks use the JPA (which, if you’re on JBoss Application Server, is simply
Hibernate underneath the covers). WebSphere uses iBATIS.

Grails uses GORM. However, GORM is not its own creation; under the covers, it uses
Hibernate for its persistence implementation. GORM simply wraps Hibernate in Groovy
layers. This is a blessing, because Hibernate gives GORM all of the necessary plumbing
code, allowing GORM to focus on the usability instead. In fact, if you’re familiar with
ActiveRecord and Hibernate, then you should be about 95% good to go when it comes to
writing domain objects in Grails. GORM truly is an amalgamation of the ActiveRecord
and Hibernate, giving you the best of both worlds. As we move along with examples on
how to use GORM, the similarities and differences will become more apparent.

Collab-Todo’s Domain
Before going into depth about how to create domains in Groovy, let’s start by explaining
what you’ll be creating. In Chapter 4, we gave you the base of the domain structure with
the Todo, Category, and User classes. However, this application wouldn’t be that interesting
if we kept just those three domain objects. We decided to wait to show you the entire
domain for two major reasons:

• We didn’t want to overwhelm you with the domain when you were just starting to
learn the system.

• Without more background, you might not be entirely familiar with the way the
domain is created.

However, now we’re at that stage where we can introduce you to the entire domain.
We’ll start off by going over what the Java class domain looks like. Then we’ll explain the
options you have for creating and configuring the domain components. Finally, we’ll show
you the database you’ll create with the domain configurations.

Figure 6-1 shows a class-level diagram filled with connectors and columns. This should
give you an overview of the application you’ll be building and explain what the individual
parts mean. We suggest you also look at the source code to get an idea of how you’ll transi-
tion from the diagram in Figure 6-1 to the actual code you’ll be using throughout the book.
(You can find the code samples for this chapter in the Source Code/Download area of the
Apress web site [www.apress.com].) Please note that this diagram contains two domains that
we’ll use in the next chapter as part of the security apparatus.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES166

10450_ch06.qxd 5/20/08 10:41 PM Page 166

http://www.apress.com

Figure 6-1. Class-level diagram of the domain

Added in Chapter 7

todo_tbl

id

associated_file
category_id
complete_date
create_date
due_date
last_modified_date
name_str
note_str
owner_id
priority
start_date
status
contentType
fileName

user

id

version
active
address_address_line1
address_address_line2
address_city
address_county
address_state
address_zip_code
email
first_name
last_name
password
user_name
class
department

requestmap

id

version
config_attribute
url

keyword

id

version
description
name

category

id

version
description
name
user_id

buddy_list_member

id

version
buddy_list_id
nick_name
user_id

buddy_list

id

version
description
name
owner_id

authorities

id

version
authority
username

todo_tbl_keyword

keywords_id
todos_id

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 167

10450_ch06.qxd 5/20/08 10:41 PM Page 167

■Note We’re using the domain model to map the database; we’re not using the database to map the
domain model. This is becoming a fairly standard practice, although you’re more than welcome to do the
reverse.

A few of these tables should seem familiar to you. Table 6-1 provides a list of each
domain object and a brief description of its purpose.

Table 6-1. Domain Classes Used for the Collab-Todo Application

Domain Name Description

Address An inner domain object that we have stored inside the User.groovy file,
because you’ll use it as an embedded class anyway.

Admin Extends the User class. You’ll use it for administrators, where you’ll track
what department they are with. You will not use this class in permissioning,
though.

Authorities Used as part of the Acegi security plug-in that we’ll get into in Chapter 7.

BuddyList Defines the buddy lists for each of the users.

BuddyListMember Each person the users want in their buddy lists must be referenced in this
class. The other purpose of this class is to assign nicknames.

Category Creates specific names to categorize to-dos by.

Keyword Creates keywords to differentiate the individual to-dos.

Requestmap Used as part of the Acegi plug-in discussed in Chapter 7.

Todo The holder for all the to-dos. This is the main object of the application.

User Stores information about the person creating the to-do.

As we move through this chapter, we will add various relations and constraints to the
domain model. Let’s start with how you actually create the domain object.

Creating Domain Objects
Because we’re discussing how to create the domain objects that create the database, it’s
best to start off small by examining just one table at first. In the previous two chapters, we
showed you how to start the domain collection and add to it. Now we’ll dive into all the
options and the specifics of how domain creation works. Luckily, even if you’ve never
worked with Hibernate or Java Data Objects (JDO), learning how to use GORM will be
easy. For one, it’s intuitive. For example, with normal JDOs, you have to memorize what
many-to-one, one-to-one, and so on mean. With GORM, relationships are easier to define.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES168

10450_ch06.qxd 5/20/08 10:41 PM Page 168

The relationships are defined in a DSL syntax so that domain A belongs to domain B or
domain A has many domain Bs associated with it. GORM was built with a DSL, so the
terms you use to create the area sound like how you speak.

We’re going to take a few steps back before we take a few steps forward. We’ll start
with basic domain creation, and we’ll dive into the details of what’s going on under the
covers. Then we’ll go into some more advanced settings for the domain, including how
to create complex object types and how to overwrite the storage of the domain. By the
end of this section, you should be ready to create and customize almost any domain
object you need.

Basic Domain Creation

Figure 6-1 showed the domain model you’ll be using, and in the previous chapters, you
saw the implementation of a few domain objects. However, we have not detailed how you
create a domain object of your own, your options in creating it, or even how it affects the
underlying database. We have now come to that time. We’ll detail two sets of concepts:

• Creating a fully functional domain model with constraints and relationships

• Understanding how these domain objects create and interact with the database

First, let’s re-create the Todo domain object. We’re doing this not because we want to
waste more of your time, or because we get paid by the page (we don’t). We’re doing this
because you should see what’s occurring to the database under the covers when you cre-
ate the tables we have defined for Collab-Todo application. While it’s nice that the ORM
tools isolate you from having to create the database tables directly with SQL commands,
you still need to have a grasp on what happens behind the scenes.

If you have ever created a domain object in EJB3 or Hibernate, this will seem
familiar. Let’s refresh our memory of the Todo domain and see how it interacts with
the database. Listing 6-1 contains a partial listing of the domain; we’re only showing
the domain properties.

Listing 6-1. Revisiting the Todo Domain

class Todo {

static belongsTo = [User, Category]

User owner

Category category

String name

String note

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 169

10450_ch06.qxd 5/20/08 10:41 PM Page 169

Date createdDate

Date dueDate

Date completedDate

String priority

String status

...

}

You might be wondering, “What is GORM doing when it stores the domain in the
database?” Well, that’s actually pretty simple. Figure 6-2 shows a snapshot of the table
from a MySQL database. Note how it is the implementation of the todo table seen in
Figure 4-17 from Chapter 4.

Figure 6-2. The todo table

If you compare this table to the domain, you’ll notice a few differences. Let’s break
them down into a few areas.

New Columns

Probably the first things you’ll notice are the auto-generated primary key ID and the ver-
sion. The ID is always used as the reference for the primary key; you can access it off the
domain object at any time. The ID ties the particular detached domain object to the per-
sisted one. Hibernate also uses a version field for transactional integrity and to support
optimistic locking. This works much like ActiveRecord in Rails, which allows you to have
the primary key and version created for you; unfortunately, the downside is that you can-
not overwrite the primary key by hand.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES170

10450_ch06.qxd 5/20/08 10:41 PM Page 170

■Note It may seem like a downside that the primary key is set for you by default, but in practice, using
a single unique ID primary key with Hibernate allows for the best performance when interacting with the
database. We’ll show you how to use mappings to change the primary key in the “Changing the Primary
Key” section of the chapter.

Naming

Next, notice that the table name and column names are assigned. The names that were
in CamelCase before are now switched to snake_case (lowercased and separated by an
underscore).

Foreign Keys

In most databases, foreign keys or foreign key indices are created between the User and
Category tables. GORM sets up the foreign key by taking the class that has the belongsTo
reserved word—in this case, the Category class has belongsTo = User—and saving the
user_id column in the category table to the database. The user_id column is the concate-
nation of the belongsTo table name with _id.

Data Type

The last thing you’ll notice is the data types. For the most part, they’re derived from the
types you set in the domain itself. So Strings become VARCHARs, Dates become DATETIMEs,
and so on. Of course, the exact type is dependent on the actual database you’re using and
the constraints applied to the property.

Setting Default Values

Many applications have a default value to store in the database if you don’t select one for
them. Setting a default value is easy in GORM; simply set the value as you would to a normal
domain object. In general, a status usually has a starting value. In the Collab-Todo applica-
tion, your value will not be "Completed" from the get-go, so start the status at "Started". If the
user wants to change this upon creation, he or she will be able to. Listing 6-2 showcases the
updated change.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 171

10450_ch06.qxd 5/20/08 10:41 PM Page 171

Listing 6-2. The Todo with a Default Value for Status

class Todo {

static belongsTo = [User, Category]

User owner

Category category

String name

String note

Date createdDate

Date dueDate

Date completedDate

String priority

String status = "Started"

...

}

Large Object Types

Before we move on to relationships, let’s discuss the treatment of large object types. Large
objects are generally binary large objects (BLOBs) and character large objects (CLOBs) that
get persisted to the database. Although we’re storing objects to the database as an exam-
ple and will be using it to highlight features in Chapter 8 on downloading and uploading
files, we don’t necessarily suggest using a database to store files. Files can be very large,
and unless you need to version those files, it is unwise to waste the database as a storage
place. Instead, use the file system to keep files. Remember that the point of a file system
is to store files.

Of course, there are legitimate reasons to store files in the database, so if you want to
store BLOBs, simply set the datatype to byte[]. Note that we’ve added an item to Todo called
associatedFile. When you update the database in MySQL, you will notice that the object
type created is TINYBLOB. In addition, setting the maxSize on the constraints produces a
longtext column in the database when using MySQL.

Creating Relationships

Unless you’re building a domain structure with only a few classes, you’re bound to have
relations to other classes. For example, the Todo object belongs to one Category and one
User. Conversely, a User can have many Todos. We’ll discuss the following four relationship
types:

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES172

10450_ch06.qxd 5/20/08 10:41 PM Page 172

• One-to-one

• One-to-many

• Many-to-one

• Many-to-many

Writing relationships in Grails is relatively easy. In fact, the syntax and usage are
virtually identical to Ruby on Rails’ ActiveRecord. Knowing that GORM is based on
Hibernate, you might expect the syntax and usage to be more like Hibernate or JPA,
but this isn’t the case. With standard JPA, you can create relations using annotations
solely on one side of the bean. However, these annotations can get entirely too com-
plex. For example, take the many-to-many relationship in JPA shown in Listing 6-3.

Listing 6-3. Example of a Many-to-Many Relationship in JPA

@ManyToMany

@JoinTable(name="COURSE_TO_STUDENT_TBL",

joinColumns=@JoinColumn(name="courseId"),

inverseJoinColumns=@JoinColumn(name="studentId"))

private Collection<Student> students;

Note that there are different annotations for each type of relationship. In reality, JPA
configures more from the database level, whereas GORM is programmed more from the
verbal level. First, we’ll review the players involved, then we’ll show you how to create the
relationships.

Players Involved

As you saw in Chapter 4, creating relationships is quite easy. However, we’ll provide an
example for those who need a refresher. You’ll need to modify only two pieces of code in
your classes. You’ll use the following two keywords:

• hasMany

• belongsTo

The next section shows examples of these in action.

One-to-One

A one-to-one relationship exists when one record in table A references exactly one record
in table B, and vice versa. For example, the User table contains a reference to the Address

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 173

10450_ch06.qxd 5/20/08 10:41 PM Page 173

table. There is exactly one user at one particular address. Listing 6-4 shows an example of
each table.

Listing 6-4. Example of a One-to-One Relationship

class User {

...

Address address

}

class Address {

User user

}

■Note The code for the book doesn’t contain a reference to User in Address, because we’re going to treat
Address as an embedded class. This is merely one way of doing it. We actually have no pure one-to-one
relationships in our code base.

One-to-Many

A one-to-many relationship exists when a record in table A can reference many records
in table B, but when those records in table B can only reference one record in table A.
Our application contains many examples of one-to-many relationships, one of which is
the relationship between the user and the buddy lists. A user can have multiple buddy
lists, but the buddy list can only be referenced to one user. Listing 6-5 shows an example
of this in the code.

Listing 6-5. Example of a One-to-Many Relationship

class User {

...

static hasMany = [buddyLists: BuddyList]

}

class BuddyList {

static belongsTo = User

}

hasMany, which is put on the consuming domain, tells you that this domain “has
many” of this domain. The belongsTo keyword is on the other side of the object—in this
case, the BuddyList. The belongsTo keyword refers to what properties are referencing.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES174

10450_ch06.qxd 5/20/08 10:41 PM Page 174

Let’s look at another example in the BuddyList domain that has many BuddyListMembers,
as shown in Listing 6-6.

Listing 6-6. Defining hasMany on BuddyListMember

class BuddyList {

static hasMany = [members: BuddyListMember]

...

}

Here, members references the variable name you’ll use to retrieve the BuddyListMembers
from the BuddyList object. This is just one side of the relationship. The other side is actually
the more important side and is what ties the constraints together in the database.

Listing 6-7 shows how to define belongsTo on the BuddyList object.

Listing 6-7. Defining belongsTo on BuddyListMember

class BuddyListMember {

static belongsTo = BuddyList

}

Putting this static reference on belongsTo tells the BuddyListMember class to put a refer-
ence to BuddyList in BuddyListMember’s table upon database creation.

Managing Relationships

Adding to the relationships is quite easy and makes use of Groovy dynamic syntax. List-
ing 6-8 shows how to add and remove members from BuddyList.

Listing 6-8. Adding BuddyList to and Removing BuddyList from BuddyListMember

BuddyList myList

myList.addToMembers(someMember)

myList.removeFromMembers(someMember)

Many-to-One

As you’ve probably guessed, a many-to-one relationship is a complete inverse of the one-
to-many relationship. Listing 6-5 shows a many-to-one relationship from the point of view
of the buddy list. This is an example of what we meant when we said that GORM is more
intuitive than JPA. JPA would have included an @ManyToOne annotation.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 175

10450_ch06.qxd 5/20/08 10:41 PM Page 175

Many-to-Many

The many-to-many relationship further demonstrates the distinction between the way
GORM and JPA implement relationships. A many-to-many relationship looks much dif-
ferent and is more readable than the many-to-many relationships in JPA. Readability is
part of the goal of using dynamic languages such as Groovy and Ruby.

In a many-to-many relationship, a record in table A can reference multiple records
in table B. Conversely, a record in table B can reference multiple records in table A. To
set this up, you use the same keywords you used previously, so you have nothing new to
learn. Both records contain hasMany, because they both reference many records in the
other table. In addition, at least one class needs belongsTo to create the relation (it doesn’t
matter which one). Listing 6-9 shows an example of implementing a many-to-many rela-
tionship between the Todo and Keyword domains.

Listing 6-9. Example of a Many-to-Many Relationship

class Todo {

static hasMany = [keywords: Keyword]

}

class Keyword {

static belongsTo = Todo

static hasMany = [todos: Todo]

}

Here, you can add and remove the keywords the same way you did in Listing 6-8.

DOMAIN-TO-DATABASE TRANSLATION

One of the biggest challenges when using JDO is successfully translating your domain objects to the
database. With Hibernate and EJB3, you can easily add options to change anything, including interme-
diate tables.

However, this is not always the case with Grails. While it is possible in Grails to be fully customized
(because you can create your own mapping files), it is not advisable. In some of Grails’ earlier releases,
you could only change the name of the tables without having to create your own Hibernate configura-
tion files. With the advent of mappings in more recent releases, you can change more and more areas.
You’re still somewhat limited (mostly in regards to intermediary tables), but for the most part, you can
still make your DBAs happy with standard naming conventions.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES176

10450_ch06.qxd 5/20/08 10:41 PM Page 176

Overwriting Default Settings

Now that we’ve established the basic rules of domain creation, you should be able to do
everything you need to create your domain objects. There are a few items we have not
covered yet, such as constraints, but we’ll wait until the “Validation” section. In this sec-
tion, we’ll go over a few “advanced” settings for domain items. First, we’ll show you how
to fine-tune your tables, columns, and indexes for specific names and values. You could
configure these items in a Hibernate configuration file, but we’ll show you how to config-
ure them in DSLs. In addition, we’ll show you how to add properties to domains that are
not persisted, and we’ll explain how to fire events when inserting, updating, and deleting
a table.

Adjusting the Mappings

One of the downsides to Ruby on Rails’ ActiveRecord is the lack of ease in being able to
adjust the names of the tables and columns on the database itself. This might seem like
a trivial problem to have, but the truth is that if you’ve ever worked in any large corporate
environment, you’ve probably encountered database administrators who want the data-
base tables and columns to be named a certain way. Sometimes it’s for good readability,
and other times it’s just they way they’ve been doing things for 30 years. The fact remains,
you’ll have to conform to their standards to push your application to production.

Luckily, GORM allows you to adjust these settings in a DSL way without the need for
extra configuration files, as Hibernate requires. To demonstrate, we’ll customize the Todo
domain. By the end, you’ll be able to see those changes reflected.

To make these adjustments, you need to add a static mapping closure to the domain
object. The additional code simply adds to those static mappings. Check out the adjust-
ment to Todo in Listing 6-10.

Listing 6-10. Todo with the Mapping Closure Defined

class Todo {

...

static mapping = {

// insert mappings here

}

}

Now you can start adding to the static mappings, slowly growing the mapping for
added functionality.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 177

10450_ch06.qxd 5/20/08 10:41 PM Page 177

Table and Column Naming

First, change the table name and a column name; these are common changes to those
in an enterprise environment. To change the table name persisted from todo to todo_tbl,
add the following line to the mapping:

table 'todo_tbl'

This simply tells GORM that the table is named todo_tbl.
That was easy enough. Now, let’s update the column names. Because a table can

have multiple columns, column names are grouped together under one subblock in the
mapping. Change the name of the name and note to name_str and note_str. This naming
convention is somewhat common for DBAs, who like to see the column type simply by
glancing at the column name. To do this, add the following code to the mapping:

columns {

name column:'name_str'

note column:'note_str'

}

GORM reads this as, “For columns, the name property references column name_str.”

Changing the Primary Key

Earlier versions of Grails provided no easy way of changing the primary key that the column
goes off of. Even worse, you couldn’t change the generation method. While this probably
didn’t affect smaller shops, it likely affected large companies, many of which demanded that
DBAs use stored procedures or other techniques to generate a primary key. First, we’ll go
over how to change the generator, then we’ll discuss how to change the primary key itself.

By default, the generator uses the native implementation of the database. This could
be an identity or a sequence, depending on the database. However, let’s say you want to
change it to use a high-low method of determining the number. You would add this entry
to your mapping:

id generator:'hilo', params:[table:'hi_value',column:'next_value',max_lo:100]

This entry starts off with identifying itself by referencing to the id property, which is the
default property on the domain. Next, generator defines the generator to be used, and
params defines the parameters to pass into the generator. For a high-low calculation, the
generator needs a table name, a column in the table, and a maximum low. Remember, this
is all based off of what Hibernate expects as parameters for each of the generations. We’re
not going to go over them here, but you can view the Hibernate generator documentation.1

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES178

1. http://www.hibernate.org/hib_docs/v3/reference/en/html_single/
#mapping-declaration-id-generator

10450_ch06.qxd 5/20/08 10:41 PM Page 178

http://www.hibernate.org/hib_docs/v3/reference/en/html_single

The other common approach to creating primary keys is to use a composite key,
which has multiple attributes. In the example, this could be a combination of the name
and the due date, the name and the user ID, and so on. Before we explain how to change
the primary key to a composite key, we recommend that you don’t do this unless you have
to. Many would think of it as just poor design; however, the more important reason not to
change it from a single ID is the fact that Hibernate performs best when using a primary
key generated by one column.

This being said, let’s take a look how to do it. Suppose you want the primary key to be
the name plus the due date, because you cannot have the same named item due on the
same date. Defining it is as simple as adding a composite ID entry in the mapping:

id composite:['name', 'dueDate]'

■Note You cannot define a composite ID with a generated ID. In addition, because you can’t have two dif-
ferent primary key techniques on one table, we’ve only made use of the generated ID for this chapter’s
source code.

Disabling Versioning

By default, GORM uses versioning to help maintain a version number in the database.
Having versions is Hibernate’s way of checking to make sure that as you’re updating a
record, someone doesn’t update it underneath you. Whenever you update a record in
the table, the version number gets incremented. Before the actual save occurs, Hibernate
checks the version for the record you’re trying to save against the record in the database.
If they’re different, Hibernate doesn’t allow the save to occur.

While this sounds great, there may be legitimate reasons you don’t want to use version-
ing. In some applications, it may not matter if the record has been updated by two people
at the same time. To turn off versioning, simply type this command in the mapping:

version false

This eliminates the column version from your table, and Hibernate will no longer
perform any version checking.

Changing Eager Fetching and Locking

When you retrieve embedded domains from the database, GORM tells Hibernate to fetch
them lazily. However, if you want to fetch them eagerly, you must disable lazy fetching for
the column.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 179

10450_ch06.qxd 5/20/08 10:41 PM Page 179

The Todo object offers no good example of this, so we’ll use the User object, which has
an embedded address property. In Listing 6-11, you can see an example of Todo with the
embedded address domain being fetched eagerly.

Listing 6-11. Todo with the Embedded address Fetched Eagerly

class User {

static mapping = {

columns {

address lazy:false

}

}

}

Creating Database Indices

You can also tune the database indices from the GORM domain level. DBAs can then these
by hand in the database, but many people (especially those without full-time database
architects) find it easier to tune them via the application framework. This ensures that if
you’re using the automatic update feature of the database, the indexes will also get updated.

In the example, you’ll define the name and createDate indexes. You’ll name the first
index Name_Idx, and you’ll name the createDate index Name_Create_Date_Idx. Listing 6-12
shows you how to define the index in the columns section.

Listing 6-12. Defining Indexes for the Todo Domain

class Todo {

static mapping = {

columns {

name index:'Name_Idx, Name_Create_Date_Idx'

createDate index:'Name_Create_Date_Idx'

}

}

}

Class Inheritance

It’s typical of a domain diagram to have class inheritance, but this concept isn’t always typ-
ical in database design. Luckily, with GORM, it’s literally as easy as extending a class. For
the data model, the Admin class extends the User class. Listing 6-13 shows the Admin class.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES180

10450_ch06.qxd 5/20/08 10:41 PM Page 180

Listing 6-13. The Admin Class That Extends the User Class

class Admin extends User {

String department

}

The real question is, “What goes on in the underlying database below?” By default, it
keeps only one table for your entire hierarchy. So instead of having a User and an Admin
table, it has only a User table with all the data in it for all the classes. Besides the combined
columns and the other normal columns, you will also notice a class column in the data-
base, which serves as the differentiator when creating an object so you can know exactly
which object you’re creating it from.

This situation works well for the example, but there are some drawbacks. To begin
with, if you have complex inheritance with lots of properties in the child domains, you
would be creating artificially big tables that aren’t always getting the maximum use. Fur-
thermore, you wouldn’t be able to set non-null columns on the child objects. If that’s the
position you’re in, you can set the following line in the static mapping:

tablePerHierarchy true

When set to true, this tells GORM to create a different table for each object in the
class, so you’ll have separate Admin and User tables. Of course, the drawback in this sce-
nario is that they will both contain duplicate data from the base class. Furthermore, if
you want to query all users, you’ll have to join User and Admin.

■Note Hibernate and JPA offer a few additional configurations that aren’t implemented directly in GORM.
So if having one table per hierarchy or having all the properties in one table don’t fit what you’re looking for,
you can look at using Hibernate configuration files for these domains instead.

Turning on the Cache

One of the big pluses with Hibernate is its ability to use second-level caching, which
stores data associated with the domain class to the Hibernate cache. The advantage to
this is that if you retrieve the data, it will pull it from the cache instead of making a call
to the database. This is a great mechanism for retrieving data that is accessed often and
is rarely changed. To configure the second-level cache, you have to follow a few steps.
First, update the DataSource.groovy file, then update the domain object in question.

Configuring the cache in the data source is easy. Add the code from Listing 6-14 into
your DataSource.groovy file.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 181

10450_ch06.qxd 5/20/08 10:41 PM Page 181

Listing 6-14. The Entry to Initialize the Hibernate Second-Level Cache

hibernate {

cache.use_second_level_cache=true

cache.use_query_cache=true

cache.provider_class='org.hibernate.cache.EhCacheProvider'

}

This tells Hibernate that you want to use second-level caching and that the provider
you’re going to use is EhCacheProvider. You can swap this line out with another provider if
you like; this just happens to be the de facto Hibernate cache.

Next, initialize the cache for the individual domain objects you want to associate it
with. You initialize it for Todo by inserting the cache entry into the mapping constraints.
Add the following line to your mapping:

cache true

When using true, it signals that the object should be stored in the cache. By default,
this initializes the cache to read-only and non-lazy. However, you can further adjust the
cache settings to be read-write, transactional, or even lazy. To do this, you use a similar
entry to the previous one but with more specifics. You would create the following entry
to make it read-write and lazy:

cache usage:'read-write', include:'lazy'

Besides configuring the cache at the class level, you can also configure it for embed-
ded classes at the domain level. The configuration is virtually identical to what you did
previously, except you specify the column that will be cached, as shown in Listing 6-15.

Listing 6-15. Configuring the Cache for the Address on the User

class User {

static mapping = {

address cache:true

}

In addition, the same optional configurations (lazy, read-write) you applied previ-
ously can be applied to this configuration as well.

Transient Properties

In JPA and GORM, all the properties on your domain (or entity) objects are persisted to
the database by default. This can be disadvantageous when you want to have properties

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES182

10450_ch06.qxd 5/20/08 10:41 PM Page 182

on your domains that either are amalgamations of other properties or simply don’t need
to be persisted. Luckily, in GORM, you can easily mark properties to not be persisted.

In GORM and JPA, properties that you don’t want to persist are called transient prop-
erties. In JPA, you mark each property with the @Transient annotation. In GORM, you create
a transient mapping of all these properties.

For the example, you’ll use the User table. Inside User, you want to have a comfirmPassword

property, so you can make sure the user typed in the correct password. Obviously, you don’t
need the password persisted twice, so you mark it as transient. In Listing 6-16, you can see
that you add confirmPassword to the transients mapping.

Listing 6-16. User Object with the Transient confirmPassword

class User {

static transients = ["confirmPassword"]

String firstName

String lastName

String userName

String password

String email

String confirmPassword

}

As you can see, you still add the confirmPassword to the normal domain, but you also
add it to a list of strings called transients, marking it as transient.

GORM Events

Often in normal domain and DAO architectures, you could have base save/update/delete
methods. However, if you ever want to add a universal concept for a particular domain,
such as updating timestamps or writing to a log, you could overwrite the method, add
your own custom needs, and then call the parent method. However, GORM and some of
these other more modern frameworks eliminate the need for the DAO classes and allow
you to access the domain class directly. However, this can pose a problem, because now
the individual developers are responsible for updating fields (such as a last-modified
date) that always need to be run when updating, and writing to the log file. Yuck; this
could lead to disaster.

Luckily, GORM has an answer to this problem. It gives you the ability to define these
types of transitions at the domain level. Todo has lastModifiedDate and createDate. In GORM,
you can add two methods to the domain that are called automatically before inserting and
before updating the database. Obviously, the beforeInsert method is called before insertion,

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 183

10450_ch06.qxd 5/20/08 10:41 PM Page 183

and beforeUpdate is called before updating. Listing 6-17 shows the code you need to add to
Todo in order to have your dates modified at insertion and creation.

Listing 6-17. Code for Adding the Automatic Events for Todo

def beforeInsert = {

createDate = new Date()

lastModifiedDate = new Date()

}

def beforeUpdate = {

lastModifiedDate = new Date()

}

Now whenever a save or update is called, these two methods will be called regardless
from where the save or update is called from. In addition, a beforeDelete event will be called
before a deletion.

Do you detect a pattern here? Having create and modify dates is a fairly standard
pattern. In order to have this same functionality on more than one class, you would
have to add those seven lines of code plus the two lines to define the domains in each
of your domain classes.

Luckily, as you may have guessed, GORM has a way around this. If you have lastUpdated
and dateCreated named properties, you can configure GORM to automatically update them
by adding the following line in the mapping:

autoTimestamp false

Note that the properties have to be named lastUpdated and dateCreated. In addition,
lastUpdated only gets updated when the domain is actually updated and not on a creation
like before.

Finally, there is one other way to adjust items, and that is on the actual loading of
the item, or rather after the item has been loaded and all the properties have been set.
Listing 6-18 contains a method that displays a message upon loading the domain object.

Listing 6-18. Method Called upon Loading the Domain

def onLoad = {

print 'We have loaded the item'

}

Database Model

Before moving onto validation, let’s see how all the updates to the domain model affect
a MySQL database.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES184

10450_ch06.qxd 5/20/08 10:41 PM Page 184

In Figure 6-3, you can see the output of the database structure after being created by
GORM.

Figure 6-3. The database model after being created by GORM

■Note We kept the modifications to the generator, and we included the lack of versioning and the name
change, so Figure 6-3 includes some extra tables you might not have expected.

Added in Chapter 7
todo_tbl

PK, FK1, FK2

PK, FK1, FK2

PK, FK1, FK2, FK3

id

associated_file
category_id
complete_date
create_date
due_date
last_modified_date
name_str
note_str
owner_id
priority
start_date
status

user

id

version
active
address_address_line1
address_address_line2
address_city
address_county
address_state
address_zip_code
email
first_name
last_name
password
user_name
class
department

requestmap

PK id

version
config_attribute
url

keyword

id

version
description
name

category

PK id

version
description
name
user_id

buddy_list_member

PK id

version
buddy_list_id
nick_name
user_id

buddy_list

PK id

version
description
name
owner_id

authorities

PK id

version
authority
username

todo_tbl_keyword

keywords_id
todos_id

todo_keyword

todos_id
keywords_id

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 185

10450_ch06.qxd 5/20/08 10:41 PM Page 185

Validation
In the previous chapters, you saw that when you executed save() on the Todo instance,
GORM would only persist the data if the validations (set in the constraints) passed for the
domain. The save() would return a true or false depending on if persisting was successful
or not. Now the real question is, “How do you know what to validate?”

Constraints are somewhat of a dual-use item. Their main functionality is to validate
items before they’re persisted to the database, but they also can adjust some of the set-
tings on the database itself for the column. For example, if you mark a column in your
constraints as nullable or set a maximum length, then these changes will be reflected at
the database level as well. Out of the box, GORM comes with quite a few validations, and
it even provides the framework for creating a few custom validations of your own.

For the purpose of the sample application, you only need a small subset of those vali-
dations, so while we will list all of them here, you’ll only use a few. In addition, just like any
application, it would be impossible for all the built-in validations to cover every situation,
so we’ll also introduce the idea of custom validations. We will then close with a discussion
about how to change the messages to something a bit more meaningful.

Constraints

You’ve already seen constraints in Chapter 4. These were used to determine whether some
properties had to be filled in on the domain object, and also to set the order of display when
scaffolding the domain. Let’s expand a bit and look at what other features you can use
constraints for.

You have seen the nullable constraint, which not only verifies that the object is not
null, but also sets the database property to “not null” (in Figure 6-2, you can see many
properties are set to “not null”). Of course, this assumes you’re using GORM to create or
update your database.

Let’s start with the familiar Todo object, since this is the object you’re going to want to
apply the most validations to. Start with the basic skeleton shown in Listing 6-19.

Listing 6-19. The Todo Object with the Validation Constraints

01 class Todo {

02 ...

03 static constraints = {

04 owner(nullable:false)

05 name(blank:false)

06 }

07 }

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES186

10450_ch06.qxd 5/20/08 10:41 PM Page 186

In line 3, static constraints = { starts the constraint area. This line makes sense
when you think about it. Constraints are static because they span multiple instances. The
next two lines define two of constraints for you. Line 4 tells you that the owner cannot be
nullable; however, it could be a blank string. Line 5 not only doesn’t allow for nulls, but it
also doesn’t allow the name to be blank.

Using Built-In Constraints

You can add quite a few different constraints to your domain object, including everything
from null checking to credit-card validation. In our application, we will use quite a bit of
these validations, although there’s no way for us to use them all. Table 6-2, however, shows
all the possible constraints provided by GORM.

Table 6-2. Constraints Built into GORM

Name Description

blank Validates that the string either is or is not blank

creditCard Validates that the string either is or is not a valid credit-card number

email Validates that the string either is or is not a valid e-mail address

inList Validates that the constraint is contained within the supplied list

matches Validates that the object matches the supplied regular expression

max Validates that the number is not larger than the supplied maximum value

min Validates that the number is not smaller than the supplied minimum value

minSize Validates that the object’s string’s length or collection’s size is larger than the
supplied amount

maxSize Validates that the object’s string’s length or collection’s size is smaller than the
supplied amount

notEqual Validates that the object is not equal to the supplied object

nullable Validates that the object is not null

range Validates that the object falls within the given range

scale Constrains the supplied number to a particular decimal place

size Validates that the object’s string’s length or collection’s size is equal to the supplied
amount

url Validates that the supplied string is formatted as a valid URL

Of course, it is impossible for the Grails team to predict all the possible constraints
needed by an application. Using precreated constraints is the easy part. In the next sec-
tion, we’ll show you how to create your own customized constraints using closures.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 187

10450_ch06.qxd 5/20/08 10:41 PM Page 187

Creating Custom Constraints

Let’s take another look at that Todo object and what other constraints you need to define
for it. Let’s start off by examining the startDate property and see what you need to con-
strain on it. For starters, you don’t want to allow users to use start dates in the past. The
purpose of this application is to create tasks that start now or in the future; in theory, this
is something that is probably created at the beginning and never changed. Nothing in the
built-in constraints shown in Table 6-2 do what you need, so you need to create your first
custom constraint. You need to allow the constraint to be null, and if the constraint is filled
in, you need to make sure the date doesn’t occur in the past.

To define custom constraints in GORM, you will mark the custom constraint with
validator. Take a look at this in action in Listing 6-20.

Listing 6-20. Applying a Simple Custom Validator to Todo

static constraints = {

...

startDate(nullable:true,

validator: {

if (it?.compareTo(new Date()) < 0) {

return false

}

return true

})

}

As you can see, this starts off like normal validations with nullable:true, but then it
adds custom validation. All custom validators start off with the word validator, followed
by a closure. Inside the closure, you need to return true if the validation passes, and false
if the validation doesn’t pass. Of course, you cannot create a decent validation with a ran-
dom closure that has no information. However, that is why you have access to the property,
demarked with it, inside the validator closure. The it represents the item that is being vali-
dated. For our validation, we are going to check that the start date doesn’t occur before the
current date. As you can see, it’s pretty easy to create a custom validation, but you can make
it even more advanced.

For this next example of functionality, let’s take a look at the completedDate field. It
makes sense that completeDate has to occur after startDate. To create a custom validator
to show this, you need to have access to the startDate object. No problem. Check out its
implementation in Listing 6-21.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES188

10450_ch06.qxd 5/20/08 10:41 PM Page 188

Listing 6-21. Applying a More Complex Validator to Todo

static constraints = {

...

completeDate(nullable:true,

validator: {

val, obj ->

if (val != null) {

return val.after(obj.createDate)

}

return true

})

}

As you can see, this looks similar to the validator you defined in Listing 6-20, with one
small change: you also pass in the variables val, obj ->. val is the variable that is passed
in; the previous example used it to represent the value of startDate. In addition, you’re
now also passing in obj, which is the domain object you’re using—in this case, the Todo
object. This allows you to compare completeDate directly with that domain’s createDate.

This gives you a fairly dynamic way of creating validations. In fact, you can even create
queries inside the validator, allowing for some pretty slick validations. Let’s take a look at
the Keyword domain, which is one of the constraints. To reduce redundancy, you want to put
a constraint on the name, because you don’t want to have any names that are also used as
names for the description. You can easily make the name a unique field, but you also want
to make sure that no description is the same as the name. If there is, you’re probably creat-
ing a name twice or not defining the other one properly. Listing 6-22 shows how to find all
the instances of description to make sure it doesn’t have the same text as the name property.

Listing 6-22. A Custom Constraint That Performs a Query

class Keyword {

...

String name

String description

static constraints = {

name(validator: {

if (Keyword.findAllByDescription(it).size() > 0) {

return false

}

return true

})

}

}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 189

10450_ch06.qxd 5/20/08 10:41 PM Page 189

Calling the Validator

Validation is called behind the scenes when you do a save or when there is an update to
the domain object. Of course, this prevents you from persisting objects that don’t pass
your own validations. However, there may be times when you’ll want to call the validator
manually, so you can do some additional checking on it or test that specific messages get
returned. Listing 6-23 shows a simple check for a validation that is called twice. The first
time it fails, and the second time it passes.

Listing 6-23. Example of a Validation Called Twice

void testValidationsOnTodo() {

def todo = new Todo(

owner: user1, name: "Validation Test", note:"Detailed web app description",

createDate: new Date(), dueDate: new Date(), lastModifiedDate:

new Date(), priority: '1', status: '1')

assert true == todo.validate()

// shouldn't validate

todo.completeDate = new Date() - 1

todo.name = null

assert false == todo.validate()

// readjust the date to be in the future

todo.completeDate = new Date() + 3

assert true == todo.validate()

}

In this example, you can see that you set completedDate to the past, which is not allowed
with the constraints. When the first validation fails, you update the completed date to the
future; now, as you can see, the validation passes. This example shows you how you can use
validation in your test cases to make sure you have an item works. This isn’t as necessary for
out-of-the-box validators, but for your custom validators, you’re going to want to use this to
make sure you wrote the validation correctly.

Validation Messages

In Chapters 4 and 5, we showed the error messages that Grails provides when a validation
fails on a page. In Chapter 5, we went over more extensively how to write the error outputs

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES190

10450_ch06.qxd 5/20/08 10:41 PM Page 190

to the page without using scaffolding. However, we haven’t yet explained how those mes-
sage names are derived. Now that we’ve gone over constraints, we’ll explain the validation
messages.

As you may have guessed from looking at the messages in messages.properties and
looking at the constraints, there is a roughly one-to-one ratio between constraints and
messages, with an added error message for the custom constraints.

Let’s take a look at the Todo example. We’ll be focusing on three constraints: name,
priority, and completeDate. Listing 6-24 shows what those three validations look like.

Listing 6-24. The name, priority, and completeDate validations in Todo

name(blank:false)

priority(blank:false)

completeDate(nullable:true,

validator: {

val, obj ->

if (val != null) {

return val.after(obj.createDate)

}

return true

}

)

If you run this on one of the Todo pages and don’t fill in the name or a date that comes
after the create date, Grails will display the page shown in Figure 6-4.

As you can see, it’s a normal validation; however, the messages are ugly and not
something you’d want to show to your end users. As we said in Chapter 5, you could
easily change these error messages to something a bit less ugly, but they would still
lack specificity. In other words, right now, the messages in the message bundles are
geared toward the type of validation, as opposed to being tied to the screen they origi-
nated from.

Grails does something pretty interesting. It has a hierarchy lookup of messages, and
that hierarchy is based on many things, including the name of the domain object, the
column, the type of validation, and the type of object involved. Table 6-3 lists the order of
the validation lookup for the Todo domain and name property having a blank validation.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 191

10450_ch06.qxd 5/20/08 10:41 PM Page 191

Figure 6-4. The page after two failed validations

Table 6-3. Hierarchy Error-Messaging Lookup

Order Name

1 todo.name.blank.error.Todo.name

2 todo.name.blank.error.name

3 todo.name.blank.error.java.lang.String

4 todo.name.blank.error

5 todo.name.blank.Todo.name

6 todo.name.blank.name

7 todo.name.blank.java.lang.String

8 todo.name.blank

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES192

10450_ch06.qxd 5/20/08 10:41 PM Page 192

Order Name

9 blank.Todo.name

10 blank.name

11 blank.java.lang.String

12 blank

As you may be able to tell by looking at the list, validation message lookup goes from
most specific to least specific. At the end, if it doesn’t find any matching messages, it will
look up the default one originally in the messages.properties resource you saw previously.

Let’s take a look at how to adjust these settings. As you saw in Listing 6-24, two were of the
same type: blank. Let’s start by changing that. Add the following line to messages.properties:

blank.java.lang.String=Blank strings are not good.

The result of changing this produces the errors shown in Figure 6-5.

Figure 6-5. The error message displayed after changing the first error

As you can see, that worked. Now let’s be a bit more specific. Adjust the error mes-
sage only for the name itself. Using the uppermost name will cut down on the time of the
lookup, but some of the later ones look cleaner. Let’s add line 9 from Table 6-3, which cre-
ates the following text to add to messages.properties:

blank.Todo.name=The name for your To Do must be filled in.

Figure 6-6 shows the results this change produced.

Figure 6-6. The final change with the two custom validators

Because the message is higher up in the hierarchy, both messages are now displayed:
one for the priority being blank, and the other for the name being blank.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 193

10450_ch06.qxd 5/20/08 10:41 PM Page 193

■Note For the custom validator, the differentiator will be the term “validator.” In the example, the top line
would have todo.completeDate.validator.error.Todo.completeDate.

Querying the Database
Starting in Chapter 4, we gave you a fully functioning web site with database persistence. In
this chapter, we have expanded that relatively crude database, and now you essentially have
a fully functioning schema complete with constraints and relations. Now that you have this
wonderful database to use, it’s time to start using it. We’re going to assume that if you’re read-
ing this book, you have at least cursory knowledge of creating SQL queries. However, if that’s
not the case, don’t worry. Grails has made creating SQL queries extremely easy—in fact, it’s
almost too easy, if you ask us.

To begin, we’ll go over four different ways to query the database. This might seem
like an overly excessive way of querying the database, but in the end, you will find that
you have the flexibility to create a query with as little or as much information as you
need to provide.

We’ll show you how to do simple CRUD operations. We demonstrated this in the
previous two chapters, but we’ll briefly rehash it so you can see how to build up your
querying ability. We’ll then explain how GORM really shows off its DSL capabilities by
being able to create dynamic queries in the form of method names. You saw a bit of this
in the earlier chapters when we did findBy, but now we’ll show you all the options and
parameters available to you. We’ll cover this for both straight single retrievals and for
retrieving multiple objects.

Finally, we’ll show you how to use Hibernate Query Language (HQL) queries instead
of the more dynamic DSL queries. Sometimes using HQL is the only way to get the query
you want.

GORM’s CRUD Support

When interacting with a database, you need to know how to do basic CRUD operations.
Most Java developers reading this are probably used to the standard DAO domain model,
where after you create the domain, you create a DAO with various operations. These DAO
models usually have the standard void delete(Domain d) and get(String primaryKey) meth-
ods. Before Hibernate, these methods would usually interact with the database directly
with straight SQL calls. This kind of methodology made a bit of sense when you had to write
the SQL code directly, but with today’s tools and a dynamic language like Groovy, these
constraints are no longer necessary.

Hibernate helped eliminate the problem of having to hard-code SQL by allowing you
to use more abstract terminology to persist to the database. But that solved only half the

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES194

10450_ch06.qxd 5/20/08 10:41 PM Page 194

problem. Why do you even need DAO at that point? It’s still a waste of programmers’ time
to create these DAO objects, and time is money.

Because we’re using Groovy as the underlying language for Grails, we now have many
more options available to us. We’ll start off by looking at a test case that steps through the
individual CRUD operations. Afterwards, we’ll discuss the ease of operations. Listing 6-25
shows a test case for updating the User object.

Listing 6-25. Performing CRUD Operations on the User

void testCRUDOperations() {

// Let's create the user

def userTemp = new User(userName: 'testUser', firstName:'John',

lastName:'Smith', password:'pass',

email:"smith@gmail.com")

// Create - let's save it

userTemp.save()

// grab the user id

def userId = userTemp.id

// Update - since we are still within the session we caught it

// we shouldn't need to do anything explicit

userTemp.password = 'A new password'

// let's see if it got updated

userTemp = User.get(userId)

assert "A new password" == userTemp.password

assert "John" == userTemp.firstName

// let's show the delete

userTemp.delete()

// let's make sure it got deleted

assert null == User.get(userId)

}

As you can see, creating, updating, and deleting are as easy as pie. None of the domain
objects have a get, delete, or save method, and there are no base classes. So how does this
work? It’s a simple method interception, as we discussed in Chapter 3. Grails has the abil-
ity to intercept methods and provide functionality for them. The same functionality of
retrieving, deleting, and saving could be done in straight Java with aspects or dynamic
proxies, but you wouldn’t be able to get that far, because the previous tests wouldn’t com-
pile in straight Java. Using a dynamic language like Groovy really gives you the best of both

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 195

10450_ch06.qxd 5/20/08 10:41 PM Page 195

mailto:smith@gmail.com

worlds. It keeps the object a lightweight object for passing between layers and storing into
HttpSession, and it gives you the functionality of a bloated object with the get, save, and
delete methods on it.

CRUD operations don’t give you everything you’ll need to do in an application, so
you still need to create some dynamic queries. You need the options to select one or more
than one record. You also may want to select records based on parameters or by interact-
ing with multiple tables. In the next section, we’ll go over creating these dynamic queries.

Creating Queries

To create the code for the Collab-Todo project, you’re going to have to create many dynamic
queries throughout the book. You’ll use these queries later on for a variety of things, from
creating user-registration pages to creating the fancier Ajax items in Chapter 8. All of these
actions require various types of dynamic support, and although the query portion will not
be the focus of those chapters, you’ll need to understand how those queries are created and
how to create some of your own queries.

Queries in GORM are different than queries in ActiveRecord or in EJB3. Because we’re
using Hibernate as the back end, they’re obviously more like Hibernate queries. Actually,
GORM has more options than Hibernate, because it makes use of Groovy’s dynamic ability
to make some DSL-type queries. The amount of options you have are the same here. Each
type serves its own purpose. If you want to become a Grails guru, it’s important to under-
stand the different types. In the next few sections, we’ll show you how to create the following
queries:

• GORM’s dynamic queries

• HQL queries

• Hibernate’s criteria queries

GORM’s Dynamic Queries

As you just saw, creating dynamic CRUD queries is fairly easy. However, you’re only able
to do a simple retrieval based on the primary key (the ID). While this is necessary to most
applications, you obviously need to do more than that. In the example application, you’ll
need to retrieve not only lists, but also lists of people and ever more specific queries.

In the upcoming sections, we’ll go over multiple types of queries, ranging from fairly
simple single finds to lists, criteria queries, and HQL queries. The criteria queries will make
use of Groovy the most by allowing you to create a DSL of the query you want to create. This
makes for some wonderfully easy queries to create. The downside is, unlike with the HQL
queries, the criteria queries are limited to querying off only one class.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES196

10450_ch06.qxd 5/20/08 10:41 PM Page 196

We’ll start by showing you how to grow some single result-set queries, then we’ll go
over how they work. We’ll list out the options you have to create the queries, and finally,
we’ll show you how to create the query lists.

■Note In these sections, we’re going to go over many types of queries. Where we can, we’ll reference
code that we’re actually using in our application. However, we can’t show all the possible ways to create
the queries. So to that extent, you’ll also be able to find these queries in the code base integration tests in
the Source Code/Download area of the Apress web site (http://wwww.apress.com).

Counts

Probably the easiest query to create a query is to do a simple count. The code in Listing 6-26
counts the amount of Todos.

Listing 6-26. Counting the Amount of Todos

Todo.count()

Besides the standard count, you can also count the amount of Todos where the columns
equal a particular value. Listing 6-27 counts the amount of Todos that have a priority of "1".

Listing 6-27. Example of a countBy Query

Todo.countByPriority('1')

Single Result-Set Queries

Now we’ll take a look at queries that return a single result set back to you. You use these
when you want to find one item. We’ll go over these two types in this section:

• findBy

• findWhere

Although there are two different ways of performing a query, the end result and the
usefulness are mostly equal. The main difference is how the query looks and how you
pass the values into the query.

Let’s take a look first at the findBy example, as shown in Listing 6-28. In this query,
you find where Todo has a priority of "2" and a status of "3".

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 197

10450_ch06.qxd 5/20/08 10:41 PM Page 197

http://wwww.apress.com

Listing 6-28. Example of a findBy Query

Todo.findByPriorityAndStatus("2", "3")

As you can imagine, there actually is no method called findByPriorityAndStatus on
Todo. This is one of our first examples of a dynamic query. In Figure 6-7, we have broken
up this query into its individual parts.

Figure 6-7. The dynamic query broken up into its parts

As you can see, the DSL method starts with a static findBy call. It then has a property
name separated with an And and another property name. In fact, we could have added
a few more Ands if we wanted to; you’re only limited by the amount of properties on the
domain object. Additionally, you can separate the properties with either an And or an Or.

This approach is very useful, especially if you want to mix Ands and Ors. However, if you
want to build something simpler that contains only Ands, you can use the query shown in
Listing 6-29.

Listing 6-29. Example of a findWhere Query

Todo.findWhere(["priority": "1", status: "2"])

Although this is a bit simpler than the previous example, in this one you’re passing
the properties and values into the class as a map. You pass the name of the domain’s
property as the key, and you pass the item you want it to equal as the value. This query
is also more useful if you received a map of name values from another call.

Multiple Results Queries

The previous queries were only able to return single results; they would have thrown
errors much like Hibernate does if you returned multiple results. In this section, we’ll
show you how to return multiple results. The way these are written looks much like the
previous examples, except they return much more. In this section, we’ll also add a few
more select types:

T o d o . f i n d B y P r i o r i t y A n d S t a t u s (2 , 3)

= = = =

Domain Object

Query Type Joined Type Values

First Property
of Domain

Second Property
of Domain

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES198

10450_ch06.qxd 5/20/08 10:41 PM Page 198

• findAllBy

• findAllWhere

• getAll

• listOrderBy

• list

findAllBy The findAllBy call is similar in functionality and use to the findBy method we used
earlier. Listing 6-30 shows an example of two findAllBys.

Listing 6-30. Two Examples of a findAllBy Query

Todo.findAllByName("Our First Web App")

Todo.findAllByPriorityOrStatus("2", "4")

In the first one, you’re finding all records where the name equals one item; in the sec-
ond, you’re separating the retrieval with an Or, so that if a record has a status with a "2" or
a "4". As with findBy, this query is able to use And or Or operations to separate the domain
properties.

findAllWhere Again, findAllWhere is similar to findWhere defined previously. Listing 6-31
shows an example of using findAllWhere to retrieve all Todos that have a priority of "1"
and a status of "2".

Listing 6-31. Example of a findAllWhere Query

Todo.findAllWhere(["priority": "1", status: "2"])

getAll getAll is much like the get method we covered in the “GORM’s CRUD Support”
section. However, get retrieves one item for an ID, while this method allows multiple
items to be passed through. This is a basic convenience method when you already have
the IDs. Listing 6-32 shows an example of retrieving three Todos with the IDs of 1, 3, and 5.

Listing 6-32. Retrieving Three Todos

Todo.getAll(1,3,5)

Todo.getAll([1,3,5])

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 199

10450_ch06.qxd 5/20/08 10:41 PM Page 199

This code contains two examples, because you can pass in the objects either as a
comma-separated list or as a map.

list The next method we are going to go over is probably the most basic type of retrieval:
retrieving all records. This returns all the items of the domain. Listing 6-33 retrieves all
the items in Todo.

Listing 6-33. Example of a list Query

Todo.list()

listOrderBy listOrderBy also retrieves the complete list of records from a domain, but it
lets you arrange them by column. Listing 6-34 retrieves the entire list ordering by the
name column.

Listing 6-34. Example of a listOrderBy Query

Todo.listOrderByName()

Filtering Queries

We haven’t actually gone over all the options for queries, because there are some overlap-
ping configurations. In this section, we’ll look at those overlapping configurations, which
provide the ability to set the maximum results, the fetch modes, what to sort on, and the
ordering. We’ll only show the code for one type, but you can use the query types equally
with any of these options:

• list

• listOrderBy

• findAllBy

• findBy

Some of this code can be useful when you’re attempting to get a partial set of records
back—for example, when doing pagination. Listing 6-35 gets results that should be 20
through 30 back, sorting on priority and the order to be descending.

Listing 6-35. Example of Filtering the Results

Todo.list(max: 10, offset: 20, sort: "priority", order "desc")

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES200

10450_ch06.qxd 5/20/08 10:41 PM Page 200

HQL Queries

The previous methods for query creation allowed you to use powerful DSLs to create sim-
ple user queries. However, using these queries is like eating sushi—an hour later, you’re
hungry for more. These GORM dynamic queries could not perform anything too com-
plex, such as ranges, and more importantly, they were only querying off themselves.

In many applications, you not only need to query other tables to get the data, but
you also often want bits and pieces of the data back—for example, a few columns from
table A mixed with a few columns from table B. With HQL queries, you can perform this
task easily.

Once again, if you’re familiar with Hibernate, this is going to be second nature to you.
However, if you’re new to Hibernate, understanding HQL is simply realizing that you’re
creating a query based off of what the domain says as opposed to what is actually in the
database (like in a SQL query).

In the “GORM’s Dynamic Queries” section, we went over two sets of queries: returning
one result set and returning multiple result sets. With HQL queries, you have the same sce-
nario plus a more general query mechanism with executeQuery:

• find

• findAll

• executeQuery

find

The first query type we’ll look at is find. Listing 6-36 shows a few examples of setting up
a find query.

Listing 6-36. An HQL Query with find

01 Todo.find("From Todo as t order by t.priority asc")

02 Todo.find("From Todo as t

where t.name = ?

and t.priority = ?

order by t.priority asc", ["Test", "2"])

03 Todo.find("From Todo as t

where t.name = :name

and t.priority = :priority

order by t.priority asc", [priority :"2", name : "Test"])

04 def todo = new Todo()

todo.name = "Test"

todo = Todo.find(todo)

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 201

10450_ch06.qxd 5/20/08 10:41 PM Page 201

As you can see, the one thing they all have in common is an HQL query. In the first
example, the find retrieves all the items in the database. However, being that this is only
a find, you better hope you have only one item in the database. The next three queries
are much more specific. In the second and third ones, you’re searching for a query with
the name "Test" and the priority of "2". The difference between the two is how you label
the variables. In second one, you do it by the order of variables. This works well in the
example, because we know the order. However, if you had more of a dynamic query com-
ing in from another source, the key/value map of the third one might be a better fit. The
fourth example is what is called a query by example. Basically, you pass in a partially com-
pleted Todo, and GORM finds a match based off the items passed in.

findAll

findAll looks the same as the examples in Listing 6-36, except this time, you’re able to
return multiple entries. As you were able to filter your list and other queries previously,
now you will be able to do the same here with max, offset, and so on. For example, if you
took the example in Listing 6-35 and converted it to a findAll HQL query, you would get
the following code:

Todo.findAll("From Todo t", max: 10, offset: 20, sort: "priority", order "desc")

If you’d like, you could even add a selection based on priority with this query:

Todo.findAll("From Todo t where t.priority = ?",

["1"], max: 10, offset: 20, sort: "priority", order "desc")

executeQuery

executeQuery is a bit different than the other queries, because you don’t necessarily need
to retrieve an actual domain object. You can simply return columns off the domain. For
example, if you want to get the names of every Todo with a priority of "1", you would use
the query shown in Listing 6-37.

Listing 6-37. Query to Find the Names of All the Todos with a Priority of "1"

Todo.executeQuery("select t.name from Todo t where t.priority = ?, "1")

In addition, all the normal rules of passing parameters work for executing the query.

Hibernate’s Criteria Queries

If you’ve ever worked with Hibernate, you’re probably familiar with Hibernate’s Criteria
API. Perhaps you tried to do some of the concepts of projections and so on, then got

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES202

10450_ch06.qxd 5/20/08 10:41 PM Page 202

confused. Sometimes the simplest criteria query seems overly complex. For those of you
not familiar with the Criteria API, it’s a Hibernate API designed to provide elegance to
creating dynamic queries. You might be wondering why this is necessary. Well, let’s think
back to the HQL queries we created previously.

What if you want to create a dynamic query? Doing so would require multiple dynamic
where clauses, which would require you to do multiple string concatenations and a bunch
of if-then-else statements. Yuck! That just gets messy fast, and lends itself to easy runtime
SQL errors—and that’s never a good thing. Using the Criteria object allows you to abstract
away creating the query and make it in a readable DSL way.

As we said, creating the Criteria queries in pure Hibernate is a bit of a pain; however,
with the Groovy language, GORM has created some fairly smooth ways for creating these
queries. In this section, we’ll go over how to create advanced Criteria queries. First, we’ll
show a small example that demonstrates the difference between creating a query with
Criteria and creating a query with HQL.

Comparing HQL and Criteria

Our first example is a relatively simple problem that you could have with any web applica-
tion—even ours. Take Todo—what if you want to search based on the note, the description,
or whatever field you want? This requires you to create a dynamic query. You need to store
the possible values in the map where the key is the name of the field and where the value
is the value.

We’ll build this in a few steps to make this as easy as possible. First, we’ll create the base
test methods for TodoTest. Next, we’ll show you the implementation of this logic if we did it
in HQL. Finally, we’ll show you how to do this the proper way in Criteria.

You’ll be creating a query that can take in this map and do multiple ands of it on
the key/value pair. Listing 6-38 shows the parameters you’re going to pass through to
the query runners.

Listing 6-38. The Entry Test Case

void testFindingTodosWithHQL() {

def params = [name: '%Second%', status: '4']

def todos = executeHQLQuery(params)

assert todos[0].name == "Our Second Web App"

}

void testFindingTodosWithCriteria() {

def params = [name: '%Second%', status: '4']

def todos = executeCriteriaQuery(params)

assert todos[0].name == "Our Second Web App"

}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 203

10450_ch06.qxd 5/20/08 10:41 PM Page 203

These tests are relatively simple; they look on the Todo list for a name with the word
Second in it and a status of '4'. With our sample data, this should only return one record
with the name "Our Second Web App". This is the easy part. Now let’s take a look at how to
implement this for an HQL query. Listing 6-39 defines executeHQLQuery.

Listing 6-39. The Dynamic HQL Query

List executeHQLQuery(def params) {

def hqlQuery = "Select t From Todo t "

if (params.size() > 0) {

def first = true

params.each { key, value ->

if (first) {

hqlQuery += ' where '

} else {

hqlQuery += ' and '

}

first = false

hqlQuery += " t.${key} like :${key} "

}

}

return Todo.executeQuery(hqlQuery, params)

}

We won’t try to claim that this is the only way of creating the necessary query, but it is
one of the ways. The solution contains multiple steps:

1. Create the select—in this case, Select t From Todo t.

2. Check whether there are any parameters. This is necessary because you don’t want
a where clause if there are no parameters.

3. Add where or and depending on whether it’s the first or subsequent property you’re
electing.

4. Add the comparison. The key is the name of the property, and the value is the value
to be compared to. You see the word key twice, because the second instance will be
replaced by a prepared statement when executeQuery is called.

5. Execute the query, pass in the supplied parameters, and voilà.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES204

10450_ch06.qxd 5/20/08 10:41 PM Page 204

If you look at that code and explanation, you’ll see that it’s not a pretty way of per-
forming that query. Luckily, Hibernate has an easier solution: the Criteria query. With this,
you can write dynamic queries without ever having to write any SQL or HQL code. And
with Groovy, this gets even easier, because you get to use builders to create your Criteria
query instead. Listing 6-40 defines the method you’ll use for creating the Criteria query.

Listing 6-40. The Criteria Query

List executeCriteriaQuery(def params) {

def todos = Todo.createCriteria().list {

and {

params.each {key, value ->

like(key, value)

}

}

}

}

Not only does this look better, but it’s much easier to read as well. Here’s the break-
down for this one:

1. Create a dynamic query on the Todo domain.

2. Use and to define a closure that then allows you to iterate through a list of
expressions.

3. Set like with a name/value pair without any formatting.

As you can see, this is much easier than creating a dynamic HQL query. Once you’re
familiar with creating Criteria queries in your average Java code, you’ll see that the ability
to use the Groovy builder with closures is cleaner and more robust. This will become
even more apparent when we increase the complexity of our Criteria examples through-
out the book.

CREATING NATIVE QUERIES

GORM, like Hibernate, lets you create native queries, which go directly against the database names,
columns, and semantics. We suggest that you use these only as a last resort, because using native
queries adds an extra layer to worry about when changing the database.

Creating native queries is fairly simple. As shown here, inject Hibernate’s org.hibernate.
SessionFactory, get a current session, and create the query:

def sessionFactory

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 205

10450_ch06.qxd 5/20/08 10:41 PM Page 205

...

def session = sessionFactory.getCurrentSession()

def result = session.createSQLQuery("SELECT * FROM TODO_TBL").list()

You inject sessionFactory at the class level; we’ll discuss injection at the end of this chapter.
Please note, though, that this query has the overhead of using ResultSetMetaData. To avoid this, you
need to add a method call to addScalar or addEntity, as shown here:

def result = session.createSQLQuery("SELECT * FROM TODO_TBL")

.addScalar("ID", Hibernate.LONG).list()

def result = session.createSQLQuery("SELECT * FROM TODO_TBL")

.addEntity(Todo.class).list()

Database Migration
Those of you familiar with Ruby on Rails are probably used to the migrations built into the
Rails system. In Grails, the built-in system only allows for database creation or updates;
there is no way to segregate out migrations when you remove columns, rename them, and
so on. The step-like migration system of Rails is not built into Hibernate.

But don’t fret; the Grails plug-in community has stepped up and offered two plug-ins
that tackle database migrations. Our application doesn’t really have much need for migra-
tions, because we are creating and using the database in one shot. However, let’s take a
look at the power these two plug-ins can provide. Before we go on, it’s important to note
that although these have similar end results to Rails migrations, they’re really nothing alike
in execution. It’s also wise to remember that if you’re performing a step such as a column
change, the scripts won’t be able to detect this, and you should create a migration for this
on your own.

The dbmigrate Plug-In

The dbmigrate plug-in is by far the simpler of the two; however, it still provides enough
support so that most users could easily stick to this one without any problems. dbmigrate
has two basic commands for completing the migration. The first one is:

grails create-migration

This inspects the current state of the database and the content of your domain
objects. The plug-in then generates a SQL file that allows you to adjust the database to
reflect what’s in your domain. Then to actually update the database, dbmigrate calls the
grails migrate command.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES206

10450_ch06.qxd 5/20/08 10:41 PM Page 206

The LiquiBase Plug-In

LiquiBase is a bit more advanced in that it gives you many more options and allows for
greater feedback if you need it. In addition, unlike the previous example that creates a SQL
script for the migration, LiquiBase creates a more generic XML file that it has to reinterrupt
to update the database.

You can install LiquiBase as a plug-in with the following command line:

grails install-plugin liquibase

Once installed, you have to create a change log file in grails-app/migrations/changelog.xml.
Listing 6-41 shows an example.

Listing 6-41. Example of a changelog.xml File

<databaseChangeLog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog/1.4"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog/1.4

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-1.4.xsd">

</databaseChangeLog>

Once the file is set up, you can then execute commands on it. You can find the com-
mands at http://www.liquibase.org/manual/grails.

While this explanation has been brief, you can find much more detailed information
about LiquiBase on its web site at http://www.liquibase.org/.

GORM OUTSIDE OF GRAILS

On the list of future enhancements for Grails is making GORM an independent part of Grails. This will
make it much easier to use GORM outside of your Grails application. Right now, it’s an integrated part of
the application, but you can still use GORM outside of Grails; it just requires a few more steps.

The following is a summary of the instructions contained at http://grails.codehaus.org/
GORM+-+StandAlone+Gorm. You must start by downloading a separate GORM JAR file from that site.
Remember that the current download is basically Grails with all the extras stripped out, such as the tag
libraries and GSP. The following instructions will look similar to how the Grails environment is set up:

1. Modify the hibernate.properties file to point to the environment you want it deployed to.

2. Put the JDBC driver for the appropriate environment into the lib directory.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 207

10450_ch06.qxd 5/20/08 10:41 PM Page 207

http://www.liquibase.org/xml/ns/dbchangelog/1.4
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.liquibase.org/xml/ns/dbchangelog/1.4www.liquibase.org/xml/ns/dbchangelog/dbchangelog-1.4.xsd
http://www.liquibase.org/manual/grails
http://www.liquibase.org
http://grails.codehaus.org

3. Put all your domain classes in the grails-app/domain directory (which is the same as a normal
Grails install).

4. Move the Groovy scripts that perform actions against the domain classes to the grails-app/
scripts directory.

5. To compile and run the scripts and domain classes, you need to choose from one of three options
on the Ant script: run, build, or clean. Run the following command to execute your specific
script:

ant run –Drun=YourScript

Services
If you’re a Java developer who has spent the last few years doing “enterprise development”
work, you’ll have to get used to the idea of controllers. It can be hard sometimes to get
used to putting so much business logic inside the controller. On top of that, sometimes it’s
not even the correct answer. Many times, it is necessary to send the code off to a service
class where you can also control the transactioning of it, the scope, and so on.

Enter Grails services. These classes are stored in the grails-app/services directory.
Like other Groovy objects in Grails, these classes are simple POJOs.

Of course, the next logical question is, “If they’re Groovy POJO scripts, why use them
instead of controllers? Is it segregation for segregation’s sake?” As you can guess, the answer
is no. Controllers differ by the fact that they are the only items accessible directly via the
GSP UI. As such, they’re where the bulk of your initial interactions should go. However,
imagine something like e-mail, which needs to be reused over and over again. Why would
you want it in a controller? The answer is, you wouldn’t. (By the way, we mention an e-mail
service as an example here, because that’s exactly what we’re going to build in Chapter 8.)

Besides the ability to segregate reusable data, services serve two other purposes as well:
one is controlling transactioning, and the other is controlling the context for the service.

Creating a Service

Creating a service is a relatively simple task, and like other Grails items, there is a
command-line call. If you want to make a todo service, you would type the following
command:

grails create-service todo

This creates two classes, as always: the service class and a test case. Listing 6-42 lists
both classes.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES208

10450_ch06.qxd 5/20/08 10:41 PM Page 208

Listing 6-42. The TodoService and TodoServiceTests Classes

class TodoServiceService {

boolean transactional = true

def serviceMethod() {

}

}

class TodoServiceTests extends GroovyTestCase {

void testSomething() {

}

}

This looks like a fairly normal class that defaults with transactioning turned on; we’ll
discuss that in a bit. In the service, you can do whatever you’d want to do in a controller;
you can call other classes, access the domain, pass in parameters, and so on.

Calling the Service

As we said earlier, you still have to go through the controller first when calling from a web
page. To access the service, you use simple injection. In Listing 6-43, the controller accesses
the service you just created.

Listing 6-43. TodoController Accesses TodoService

class TodoController {

def todoService

def process = {

todoService.serviceMethod()

}

}

If you’ve used Spring, Seam, HiveMind, or any other injection framework out there,
this concept should be familiar to you.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 209

10450_ch06.qxd 5/20/08 10:41 PM Page 209

Injecting into the Service

In addition to being able to inject the service into the controller, you can inject other
services into the service as well. If want to use Spring, or if you have some legacy Spring
code, you can also inject Spring beans into the service.

If you had the following bean defined in spring\resources.xml:

<bean id="customBean" class="com.CustomBeanImpl"/>

you could inject this bean into your bean using the ID as the name. Simply define it as
def customBean inside your service. This works by using Spring’s functionality to auto-wire
by name.

Initializing the Service

If you recall, Spring and EJB don’t always rely on constructors for initialization. The main
reason for this is because often a constructor might rely on items that need to be injected
(like Spring services), but these items may not be available during instantiation. If you have
any items that need to be looked up at creation, use Spring’s InitializingBean, which calls
the afterPropertiesSet() method. Listing 6-44 shows TodoService with a post-initialization
method.

Listing 6-44. TodoService with a Post-Initialization Method

import org.springframework.beans.factory.InitializingBean

class TodoService implements InitializingBean

{

boolean transactional = true

void afterPropertiesSet()

{

println "Post Initialization"

}

def serviceMethod() {

println "TodoService - serviceMethod"

}

}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES210

10450_ch06.qxd 5/20/08 10:41 PM Page 210

The bold areas are the new sections. As you can see, calling an initialize method is
quite simple to do, and you have access to any other services that have been injected into
that service.

Setting a Bean to Be Transactional

As you might have noticed, transactional = true exists everywhere. You can control the
transaction boundaries of items inside the services. When set to true, Grails defaults the
service to PROPAGATION_REQUIRED. Within the services, you can even inject the data sources
and get even finer-grain control.

Service Context Available in the Service

The last subject we’ll cover is service contexts. Contexts have been around for a while;
for a long time, we’ve had application, request, session, and page contexts. However, in
recent years with frameworks such as Seam and, more recently, Spring, contexts have
expanded to include the conversation context and others.

You can think of the conversation context as more than a request and less than
a session. The data has a start, a middle, and an end. For example, take a credit-card
application, which can take multiple pages to complete. It contains data that you’ll
want to have until the end.

We won’t cover conversation contexts (also known as flows) in this book. However,
here we’ll show you how you can set the service for these contexts. By default, every con-
text is a singleton, meaning that the whole application shares this one instance. This
means that you don’t want to have any data as a global property with its state specific to
the user. To adjust the context of a service, add the following line to your service:

static scope = "singleton"

The "singleton" is the default, and if you don’t define the scope, the service will be
automatically assumed to be a singleton. Table 6-4 provides a list of the available contexts.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 211

10450_ch06.qxd 5/20/08 10:41 PM Page 211

Table 6-4. Available Contexts for Services

Name Description

prototype Every time the service is injected in a new class, a new service is instantiated.

request Each time a request to the server is made, a service is instantiated.

flash The service is instantiated for the current and next requests only.

flow The service lives for the lifetime of a controller’s web flow.

conversation The service lives for the lifetime of a controller’s web flow and subflows.

session The service is instantiated and kept for the life of the user’s HttpSession.

singleton This default service is treated like a singleton and shared across the application
scope.

Summary
In this chapter, we covered quite a bit of information in a relative short amount of space.
Database interaction is an important piece of the framework puzzle, and many books
and sites are devoted to it alone.

We showed you how to create domain objects, and we explained the options used to
create them. This is important to understand, so you know how our domains operate.
Hopefully, you’ll be able to create some of your own.

From there, we showed you how to query the domains; as you saw, there are quite
a few options. Throughout the rest of this book, we will use bits and pieces of each, basi-
cally picking the best one that suits our needs at the time. Hopefully, you’ve gotten an
idea of when to use each, but be forewarned that for many, there is no one right answer.

We briefly covered the ability to use database migrations, which is useful on systems
that can change from time to time in production and when you want accurate scripts to
go from each level.

Lastly, we dove into services. We will use them in various forms as the book progresses.
In future chapters, you’ll see how services can be useful and also how the different scopes
can boost your applications performance, especially when coupled with web flows.

REFERENCES

Before we move on to the next chapter, we want to say one last thing about GORM. While covering
every aspect of it is out of the scope for this book, you shouldn’t feel intimidated by it. As we mentioned
earlier, GORM is built on top of Hibernate, and numerous free sites and books are written on using
Hibernate. If you get stuck on the HQL syntax, take a look at a few of these.

In addition, the http://grails.org web site keeps up to date on changes to GORM. Finally, if
that’s not enough, we want to mention one final place you can look, and that’s the code itself. Often,

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES212

10450_ch06.qxd 5/20/08 10:41 PM Page 212

http://grails.org

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES 213

developers write fairly ugly, hard-to-read code, especially in some frameworks. Without giving too much
praise, GORM is not like that. The GORM classes are easy to read, and more importantly, they’re very well
documented in the Javadoc, and the classes are segregated logically. For example, if you want to know all
the findBy or list options, look in the org.codehaus.groovy.grails.orm.hibernate.metaclass
package (on either the source or the API). We actually came up with much of the material for this chapter
by simply looking at what the code does and trying it out. We welcome you to do the same if you get the
chance.

Now that the domain is all ready to go, we’ll start to dive into some more interesting
code in the next few chapters. First, though, you need to secure the application so you
don’t have other people changing your ToDos. That’s what we’ll tackle next in Chapter 7.

10450_ch06.qxd 5/20/08 10:41 PM Page 213

10450_ch06.qxd 5/20/08 10:41 PM Page 214

Security in Grails

Now that you have a good foundation in Grails, it’s time to move on in our programming
adventure. We have already gone over how to create a basic application and completed the
domain model. So what’s next? We now need to address security.

Security concerns can range from actually securing a server to securing the appli-
cation itself. Since this is a book about the Grails application framework, we are going
to discuss only the latter. So when you read about “securing the application” or “secu-
rity,” we will be referring to application-level security.

So far, we have not addressed security at all. In Chapter 5, we used an extremely
unsafe generic login, which allows you to choose the user you want to log in as. This
was certainly easy to implement, but now we can move on to a more mature approach
to web security.

So, what are the goals of security? One goal of security is to allow the ability to sign
on as a specific user. We will want to know how to secure certain pages for those who
have logged in. In addition, many web sites require different levels of access for differ-
ent users. Designing your security model can get fairly convoluted, depending on your
application’s needs, and we have seen it reach the point where the application’s design
is wrapped around the security. The security needs of this book’s sample application,
Collab-Todo, are middle ground—requiring access control but nothing so complex that
we need to build an entire system from scratch.

The security apparatus we are going to use is not just to meet the needs of the appli-
cation we have created so far, but also the needs of the application going forward. Let’s
quickly examine what those needs are:

• Domain/model-level security for a user: We need to make sure that when users
retrieve their to-dos, they are retrieving theirs and no one else’s. We don’t want
people to view other’s to-dos. If they could, it would quickly make our application
unpopular.

215

C H A P T E R 7

10450_ch07.qxd 5/20/08 10:43 PM Page 215

• Administrator vs. regular user access: In Chapter 10, we are going to create a few
reports that are for only administrators. This means we need to be able to secure
certain pages of the site for administrators.

• Basic access authentication: For the web services we’ll add in Chapter 9, we need to
secure the site so it can be accessed through basic URL authentication.

If we dove straight into a solution for just our sample application’s security needs, not
only would that be a bit dull, but it also wouldn’t help you out if your application happens
to have different requirements.

In some Java frameworks, like JBoss Seam, there is a built-in security framework. That
is not the case for Grails. However, quite a few security plug-ins are available for Grails. In
this chapter, we will go over three of the plug-ins, along with our very own custom security
implementation for the application. But before we start looking at the different security
solutions, let’s take a step back and review what we actually mean by security.

What Is Security?
Before we dive into our security examples with Grails, we should reach a common under-
standing of what security means for a web application and the issues involved with adding
security to a web application. Depending on your experience in web development, this
may or may not be familiar.

Although there are many aspects to security, two techniques are very common: authen-
tication and access control. These two basic areas will serve as the core aspects for each of
the security plug-ins and the custom solution covered in this chapter.

Authentication

Even part-time web surfers are familiar with authentication, which is the process of log-
ging in to and logging out of a site. A client (typically the user on a web browser) sends
over a username and a password. The client is then either authenticated and forwarded
to a welcome screen or rejected and kept on the login page. Figure 7-1 illustrates basic
authentication.

CHAPTER 7 ■ SECURITY IN GRAILS216

10450_ch07.qxd 5/20/08 10:43 PM Page 216

Figure 7-1. Basic authentication

The login username and password sent to the server typically correspond with entries
in a database. Since this information is in a database, it is not really that secure, so most web
sites will not store the password in clear text. Generally, the password will be hashed, and the
hash of it will be saved. The value of using a hash is that it is only a one-way manipulation of
the data, as opposed to encryption, where data can be scrambled and then unscrambled
given the right key. When a password is hashed, if someone gains access to the database
and retrieves the password in an illegal way (like hacking the box), he will need to spend some
trying to determine what the original string was.

HASHING TECHNIQUES

Throughout this chapter, we will be hashing passwords prior to storing them in the database. Hashing is
a cryptographic technique to take a string and output a fixed-length string that is unintelligible. Here
are two examples of hashing a word with Message Digest algorithm 5 (MD5), a commonly used hash
function:

password - 5f4dcc3b5aa765d61d8327deb882cf99

josephsPassword - 32c6f5140cbd510d57e87bc5aeea1f60

Login Page

Authentication Layer

Category

Todo

Buddy List

CHAPTER 7 ■ SECURITY IN GRAILS 217

10450_ch07.qxd 5/20/08 10:43 PM Page 217

As you can see, although the lengths of the strings to be hashed differ, the hash length is the
same—a 32-character hex string.

A variety of techniques to produce hashes are available. The more secure the hash, the longer it
will take to create and the more space it will consume in the database.

For hashing in Java, and specifically Grails, a common technique is to use DigestUtils in the
package org.apache.commons.codec.digest.DigestUtils. This class contains a variety of meth-
ods to produce different types of hashes. Let’s take a quick look at the three methods we will be using
in this chapter:

• DigestUtils.md5(java.lang.String data): This method will produce a 16-element byte[]
using MD5 as its digest mechanism.

• DigestUtils..md5Hex(java.lang.String data): This method also uses MD5, but will cre-
ate a 32-character hex string.

• DigestUtils.shaHex(java.lang.String data): This method will create a 32-character hex
string as well, but uses SHA-1 as the digest mechanism.

See the DigestUtils API for other hashing options.1

When creating authentication for a corporate web site, you don’t want to overburden
the user with the need to remember a lot of login credentials, nor do you want to over-
burden yourself with the task of managing them. If you are creating an internal site for
a big business, or even an external site where multiple business entities can interact, you
probably do not want a person to need to create a new username and password for each
site. For one thing, it’s annoying. For another, if you need to remove that person’s login
credentials (for example, because she has left her job and should no longer be able to log
in to an internal site), it would be difficult to contact every single business unit that the
user may have an account with and get them to delete the user. That is why many com-
panies use a centralized authentication server, something like a Lightweight Directory
Access Protocol (LDAP) server.

As we go through each of the solutions in this chapter, you will notice that there are
slightly different ways to authenticate a user.

Access Control

So now that we have discussed the ability to log in, what’s next? We also need some sort of
permissions mechanism. The following are common forms of access control:

CHAPTER 7 ■ SECURITY IN GRAILS218

1. http://commons.apache.org/codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html

10450_ch07.qxd 5/20/08 10:43 PM Page 218

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html

Session validation: This is probably the simplest form of authentication. It just
involves checking if there is a valid session. Generally, this is used in conjunction
with user authentication. For the Collab-Todo site, we will take this approach to
make sure that users have been authenticated and their session is active.

User: One way to secure pages and data is on the user level itself. Many web sites that
require authentication use data at the user level to retrieve items that are specific to
a particular user. With this level, you store user data to the session, and then when-
ever you need to do a query against a back-end system, you retrieve only the data for
that user. This is how our application will work.

Roles: You can assign users to roles to provide coarse-grained permissions to pages
or even just areas of a page. An internal site may have roles like manager, developer,
trainee, and so on. For example, a site that handles work orders could allow a worker
to work on a variety of tickets, but the page that assigns or approves the tickets is
accessible only to the manager. In addition, the ticket itself may have a Delete button
available only to the manager. A more common approach, and the one we will take
for our application, is to have two roles: an admin and a regular user. The admin role
can access more functionality than is available to the regular user role. The nice thing
about roles is that you can assign multiple people to a single role, and even provide
multiple roles to a single user. Unfortunately, roles do not, in general, provide for
fine-grained control.

Permissions: For fine-grained control, we turn to permissions. With permissions, you
can give only certain users access to certain portions of a site. Returning to the exam-
ple of work order tickets, what if you wanted to allow some users to create and delete
tickets; others to just view them; and others to create, edit, and delete them? This could
be accomplished with roles, but you would need a lot of them, so it would get messy fast.
Both assigning and managing all those roles would be a burden. Using permissions is
easier.

Rules: Some sites use a rule-based access control. Systems like JBoss Seam use a rules
engine (like JBoss Drools) to determine authentication privileges while also using
permissions and roles. This provides for an extremely flexible authentication mecha-
nism. However, it also requires more configuration and general knowledge of how to
use the rules engine.

These are basic security concepts. As you may have noticed, each successive one
provides more flexibility, but with the added flexibility comes more overhead. So the
trick for you as the developer will be to pick the items you need that give you a balance
between flexibility and ease of implementation. Keep this in mind as we discuss each
security solution in this chapter.

CHAPTER 7 ■ SECURITY IN GRAILS 219

10450_ch07.qxd 5/20/08 10:43 PM Page 219

BOOTSTRAPPING

One of the directories that Grails creates for you when you create a Grails application is grails-app/
conf. This directory contains configuration files, including a bootstrap file, Bootstrap.groovy. We
have not made use of this file yet; however, that will change in this chapter. If you are familiar with the
Java Persistence API (JPA), the Bootstrap.groovy is much like the import.sql file, only smarter and
more powerful.

The traditional Java EE bootstrapping mechanism is to preload the database. This could be to
populate a preferences type table or to load some sample data. However, Grails not only allows for the
population of the database, but also to the servlet context if desired. You can use actual Groovy code
for the bootstrap file, as opposed to just SQL code, as in JPA.

When we add security in this chapter, we will want to do some prepopulation of the database. One
reason is that we are going to store permissions in the database. Additionally, we want to have a few
users prepopulated for the examples.

Bootstrapping itself is relatively easy. Here is an example of the bare minimum code in the
Bootstrap.groovy file:

class BootStrap {

def init = { servletContext ->

}

}

The init method is the method the application will call, passing in the servletContext. This
will allow us to have access to the servlet context in case we need to add data to it. Within this context,
we can do normal database insertions to add sample data. For example, to insert a user, you would add
the following line:

new User(userName: 'joseph', firstName: 'Joseph', lastName: 'Nusairat',

email: 'jnusairat@integrallis.com', password: pass).save()

You just instantiate a new User and then save it. This method of adding data will be the same
throughout this chapter and the rest of the book.

While using the bootstrap file can be a useful tool to warm the database, if you are using this in
a full development, test, or production environment, you should consider one additional item. If you are
using it to prepare static tables like roles or permission names, these are, across the board, global con-
straints. However, if you are going to prepare sample data, like users and to-dos, you do not want this
data in your production database. Luckily, within Grails, there is an easy way to configure your bootstrap
file to only write to different environments. You can detect the environment you packaged the application
to be deployed to and specify that variable in the bootstrap file. For example, using the following code,
you can create common methods or custom methods for the development and production environments:

import grails.util.GrailsUtil

. . .

CHAPTER 7 ■ SECURITY IN GRAILS220

10450_ch07.qxd 5/20/08 10:43 PM Page 220

mailto:jnusairat@integrallis.com

switch(GrailsUtil.environment) {

case "development":

configureForDevelopment()

break

case "production":

configureForProduction()

break

}

In this chapter, we will not present all of the Bootstrap.groovy file, but will show bits and pieces
of what we are adding to it. The complete file is available with this book’s downloadable source code.

An Overview of Grails Security Solutions
Two of our favorite shows on TV right now are Project Runway and Hell’s Kitchen. These
shows have experts in their fields (either designers or chefs) who are given the task of
creating something unique and awesome, and then their efforts are judged. It’s decided
which is best, or at least which one each judge likes the best. Security, and especially
security in Grails, is something like that. You have many experts in the field creating dif-
ferent security frameworks, each with pluses and minuses, and you must judge which
one is better.

Grails is truly a unique Java framework. While some frameworks suffer from the
underlying code being unstable, Grails really does not have this problem since it uses
two well-established frameworks at its core (JBoss Hibernate and Spring). However, it
suffers from being new, which brings about a lack of 100% mature plug-ins for it.
Although the developers of these plug-ins are working hard to keep up-to-date with
changes in Grails, all of the plug-ins are relatively new, as indicated by their .1 or .2
statuses. Therefore, when you deal with these plug-ins, you may encounter some not-
so-polished features.

Much like our favorite TV shows, when it comes to security plug-ins, there is rarely
a clear winner, and odds are there never will be. Each plug-in serves a particular niche
market. Which one you choose will greatly depend on your specific requirements.

The Grails security plug-ins we will examine in this chapter are JSecurity, CAS, and
Acegi. Additionally, we will demonstrate how to implement your own custom security,
which can work well for either simple sites or very complex sites where control is strict.

We will start with the custom security implementation, and then move on to the dif-
ferent plug-ins (note that the order we are discussing the solutions in is purely arbitrary
and does not represent any superiority of each). In the end, we will use the Acegi plug-in
as our solution, because it meets the needs outlined at the beginning of this chapter.

CHAPTER 7 ■ SECURITY IN GRAILS 221

10450_ch07.qxd 5/20/08 10:43 PM Page 221

■Note When examining the plug-ins in this chapter, keep in mind that none of these is in itself a specific
security solution for Grails. What has been developed thus far are wrappers for existing security mechanisms.

Because our approach in this chapter is to show you multiple paths but only go
with one, we decided to do something a bit different with the code examples in this
chapter. Normally, each chapter’s code builds on the previous chapter’s code—that is
the nature of building an application. In the previous chapter, we added quite a bit to
our domain model. Most of this is unnecessary from a pure security point of view. We
feel it’s not necessary to add that complexity here. So for all the examples (except the
Acegi one), we will be using the code from Chapter 5. For the Acegi plug-in example,
we will use the code from Chapter 6.

One of the first items you will notice when we talk about the plug-ins is that many
have their own User classes. This can pose a problem, because you are going to want to tie
your User object on your domain to the plug-in’s user class. You will want to tackle this
problem during authentication, and there are essentially two ways to solve this problem:

• If the domain model is created after plug-in creation, the set of user domain objects
the plug-in creates can either be moved into the grails-app/domain directory or ref-
erenced directly in your application. The only reason to move them is if you want to
make changes to the domain.

• You can have the plug-in’s domain object and your domain object linked by user-
name after authentication. Since this is a unique field, after authentication has
been verified, you can look up your user in the database and save your user to the
session. This provides a nice balance of keeping your application uncoupled while
at the same time totally relying on the plug-in for security. This is the approach
we’ll take in this chapter.

Custom Security Implementation
We are starting with the most basic approach to securing a web site, which is our custom
security implementation. But using a simple security apparatus does not means your web
site is simple. The two are not really related. It is just about picking the right security for
your application.

■Note The term custom implementation may be a bit confusing. This approach is not truly “custom.” Many
applications use this same approach. In fact, it’s a very common implementation. We call it custom because
it doesn’t use a security plug-in (other than the CAPTCHA one).

CHAPTER 7 ■ SECURITY IN GRAILS222

10450_ch07.qxd 5/20/08 10:43 PM Page 222

One of the main needs of any user-based application is to authenticate the users. With
our application, the majority of the pages are driven by which user is accessing the page.
The to-dos that appear are only for the logged-in user, users add buddy lists for themselves,
and so on. We also need to make sure the user is authenticated before accessing any page
except the login page. This is a fairly simple authentication pattern, and we will be using
a User object in the session to check the access to the pages. (We will use the User object
in the session in the other plug-ins, but the difference is we are not using it for page-level
authentication purposes.)

In this section, we are going to adjust the user-creation procedure. Note that for our
custom security implementation, we do not need any new domain classes. We will use
the domain classes we created in Chapter 5. Our main focus will be on manipulating the
User class. Now we will be adding a password confirmation and a CAPTCHA challenge.

CAPTCHA

While you may not be familiar with the term CAPTCHA, you probably have encountered such a chal-
lenge. For example, you may have gone to a web site and seen an image like this:

This image is part of a CAPTCHA (for Completely Automated Public Turing Test to Tell Comput-
ers and Humans Apart). You’re asked to type in the text you see in the image. The purpose is to help
prevent automated computer programs from gaining access to your site, and for the most part,
CAPTCHAs work. They are not unbreakable, but depending on the complexity of the CAPTCHA,
decoding the image requires a fairly complex neural network. CAPTCHAs are used on a variety of
sites. For example, ticketmaster.com has a fairly complex set (and we admit to missing a few on
that site).

Even simple sites are subject to spammers. When we launched our company’s web site at
http://www.integrallis.com, within a few days, we were getting hit by spam via our Contact Us
link. Now that we have added the CAPTCHA, the only e-mail we get is from real people.

In order to create the custom security solution, we will cover three aspects of its
design and implementation:

• Registering a user

• Logging users in and out

• Securing the controllers

CHAPTER 7 ■ SECURITY IN GRAILS 223

10450_ch07.qxd 5/20/08 10:43 PM Page 223

http://www.integrallis.com

Registering a User

In order to register a user, we will need to add two items: a registration page (register.gsp)
and an action to register the user in the UserController. As noted, we will use a CAPTCHA
challenge on the registration page, so we need to install the plug-in for that.

Installing the Captcha Plug-in

The CAPTCHA is being added only to the registration page because it is the only page on
the site that could be easily affected by spammers. The other parts of the application
require authentication before users even get to the page.

For the registration page with the CAPTCHA, we will be using the Simple Captcha
plug-in2 for the creation of the CAPTCHA. Let’s install the plug-in:

> grails install-plugin /home/user/captcha.zip

■Note You will need to download this plug-in directly, as there is no registered shortcut for it at the time of
writing.

JCAPTCHA

There actually is another, more advanced CAPTCHA plug-in out there called JCaptcha.3 It allows for
more customization on the output of the look of the CAPTCHA. It also lets you use a .wav file CAPTCHA
(which would be used by web users with vision difficulties).

JCaptcha does require a bit more configuration, and we did not include it here for that reason. But
we highly recommend it for a production site (there actually have been lawsuits against sites that are
not usable by the blind).

Now that we have the Grails Captcha plug-in installed, and we have the domain
objects from Chapter 5 installed, it’s time to go ahead and get this working. Let’s start
with the registration page section.

CHAPTER 7 ■ SECURITY IN GRAILS224

2. http://grails.org/Simple+Captcha+Plugin

3. http://grails.org/JCaptcha+Plugin

10450_ch07.qxd 5/20/08 10:43 PM Page 224

http://grails.org/Simple+Captcha+Plugin
http://grails.org/JCaptcha+Plugin

Implementing the Registration Page

Our registration page is going to look like the page to add a user, except we will have a
field to confirm the password and the CAPTCHA image. So, we will start by copying the
file views/user/add.gsp to register.gsp. This allows us to preserve the add.gsp page.

Listing 7-1 shows the code for register.gsp, with the new sections for the password
confirmation and the CAPTCHA link in bold.

Listing 7-1. The Form Section of register.gsp

<g:form action="handleRegistration" method="post" >

<div class="dialog">

<table>

<tbody>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="login">Login:</label>

</td>

<td valign='top'

class='valueClear ${hasErrors(bean:user,field:'userName','errors')}'>

<input type="text" name="userName" />

</td>

</tr>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="password">Password:</label>

</td>

<td valign='top'

class='valueClear ${hasErrors(bean:user,field:'password','errors')}'>

<input type="password" name="password" />

</td>

</tr>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="confirm">Confirm Password:</label>

</td>

<td valign='top'

class='valueClear

${hasErrors(bean:user,field:'password','errors')}'>

<input type="password" name="confirm" />

</td>

</tr>

CHAPTER 7 ■ SECURITY IN GRAILS 225

10450_ch07.qxd 5/20/08 10:43 PM Page 225

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="firstName">First Name:</label>

</td>

<td valign='top'

class='valueClear

${hasErrors(bean:user,field:'firstName','errors')}'>

<input type="text" name="firstName" />

</td>

</tr>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="lastName">Last Name:</label>

</td>

<td valign='top'

class='valueClear ${hasErrors(bean:user,field:'lastName','errors')}'>

<input type="text" name="lastName" />

</td>

</tr>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="email">Email:</label>

</td>

<td valign='top'

class='valueClear ${hasErrors(bean:user,field:'email','errors')}'>

<input type="text" name="email" />

</td>

</tr>

<tr class='prop'>

<td valign='top' class='nameClear'>

<label for="code">Enter Code:</label>

</td>

<td valign='top' class='valueClear'>

<input type="text" name="captcha">

</td>

</tr>

</tbody>

</table>

</div>

CHAPTER 7 ■ SECURITY IN GRAILS226

10450_ch07.qxd 5/20/08 10:43 PM Page 226

<div class="buttons">

<input class="save" type="submit" value="Register"></input>

</div>

</g:form>

The line with the captcha reference is the plug-in’s CAPTCHA controller. The controller
will create a word, save the word in clear text to a session variable, and then output the
image in a distorted manner. Figure 7-2 shows the registration page.

Figure 7-2. The register.gsp page with the password confirmation and CAPTCHA image

Adding the Registration Action to the Controller

Putting the CAPTCHA on the GSP is only half the battle in creating our CAPTCHA chal-
lenge. The other half is handling it on the server side. Unfortunately, there is nothing that
automatically intercepts the CAPTCHA when used to verify the image. We need to code
this by hand.

CHAPTER 7 ■ SECURITY IN GRAILS 227

10450_ch07.qxd 5/20/08 10:43 PM Page 227

In our UserController registration action, we will add a check to make sure the
CAPTCHA the user entered matches the CAPTCHA given. You can see our registration
action in Listing 7-2. This will check that the CAPTCHA matches, and then if it passes
validation, allow for the user to register.

Listing 7-2. The Action That Will Register a User in the UserController

def handleRegistration = {

def user = new User()

log.info("HANDLE REGISTRATION")

// Process the captcha request

def captchaText = session.captcha

session.captcha = null

if (params.captcha.toUpperCase() == captchaText) {

if(params.password != params.confirm) {

flash.message = "The two passwords you entered don't match!"

redirect(action:register)

}

else {

log.info "before save"

// Let's hash the password

user.properties = params

println(user.dump())

if(user.save()) {

log.info "saved redirecting to user controller"

// Let's log them in

session.user = user

redirect(controller:'todo')

}

else {

log.info "didn't save"

flash.user = user

redirect(action:register)

}

}

}

else {

log.info "Captcha Not Filled In"

flash.message = "Access code did not match."

redirect(controller:'user')

}

}

CHAPTER 7 ■ SECURITY IN GRAILS228

10450_ch07.qxd 5/20/08 10:43 PM Page 228

You may notice that the CAPTCHA created is in the session scope. Unfortunately, at the
time of writing, this was necessary to allow the image to spawn multiple requests (with
some of the new service-level scopes written after the plug-in’s creation, this requirement
may change in the future). We have overcome this issue slightly by saving the data from the
session to a local variable, then removing the CAPTCHA information from that session.

In addition, you will notice that, as a convenience factor, we have set the session.user
to the user that was just created. We did this because once users are logged in, we will
want other pages to know that. This information can be used to display the username or
simply to get the ID for querying.

Also notice that we’ve hashed the password. As mentioned earlier in the chapter,
hashing is a critical step, because we do not want to keep a password in the database in
clear text form.

■Note Remember that many people use the same password for multiple sites. If you stored a clear text pass-
word and your site was compromised, you could potentially expose users’ passwords to all sorts of sites and
therefore valuable data. The one downside (and it’s arguable if it’s a downside) is that if you have a password-
reminder routine, it cannot remind people of their password; instead, it will simply need to reset the password
to a random string.

Logging In and Out

Now that the user is registered, the next step is to log the user in and out. This could be
difficult depending on your back-end system. Logging in could involve going through an
LDAP server or whatever other systems you are using. However, for our example, logging
in is relatively simple, as we are just authenticating against a local database.

We will preserve the general feel of the login page we had before, except now instead
of choosing from a drop-down list, the user must actually enter a proper username and
password. The modified login page is shown in Figure 7-3.

Figure 7-3. The login page with username and password validation

CHAPTER 7 ■ SECURITY IN GRAILS 229

10450_ch07.qxd 5/20/08 10:43 PM Page 229

As you see in Listing 7-3, we check the user and the password in the database for
a match, hashing the password passed in by the front end with an MD5 hash. If a user
is not found, we will send a message to the page and redirect back to the login page. If
a match is found, we will set the user in the session and redirect to the to-do page.

Listing 7-3. The handleLogin Action of the LoginController

def handleLogin = {

def hashPassd = DU.md5Hex(params.password)

// Find the username

def user = User.findByUserNameAndPassword(params.userName, hashPassd)

if (!user) {

flash.message = "User not found for userName: ${params.userName}"

redirect(action:'index')

return

} else {

session.user = user

redirect(controller:'todo')

}

}

■Note You will notice that we send one generic message back. Some sites will search for the user first,
and then do a check against the password. This is done so that a more specific message is sent back to the
user. While this can be helpful for the user, it is also another point of exposure—it can tell a would-be hacker
which part of his attempt was successful.

Logging out is a fairly universal process in web design, and the way we do it here will
more than likely look the same as you’ve seen in other web applications. The only differ-
ences can lie in preprocessing before logging out, such as sending notifications, writing
to an events table, and so on. However, we do not need any of that for our system. We will
just invalidate the session and redirect to the index page. The code for the logout action is
shown in Listing 7-4.

Listing 7-4. The Logout Action of the LogoutController

def logout = {

log.info 'logout'

if(session.user) {

CHAPTER 7 ■ SECURITY IN GRAILS230

10450_ch07.qxd 5/20/08 10:43 PM Page 230

session.user = null

session.invalidate()

redirect(controller:'login')

}

}

Securing the Controllers

So far, we have covered the ability to log in and out of the site and to register a user. These
are the first two steps in securing the site. Now what’s left? We need to secure the actual
controller pages so that a nonauthenticated user cannot access the TodoController and
other controllers. The registration and logging in and out were relatively simple to code.
Controller security is a slightly more difficult piece of our authentication model.

We will control access to the pages using tried-and-true servlet technology: filters. Fil-
ters are great for simple, all-encompassing procedural capture. And since all but three pages
(the index, login, and registration pages are the exceptions) require a session, filters are the
cheapest and most effective way to implement access control.

Filters are relatively easy to create in Grails. Unlike servlet filters, they do not require
any web.xml configuration. Here, we will walk through the steps to create the filter.

■Note We will be using filters in the other security solutions covered in this chapter. The configuration here
applies to those other solutions as well.

Let’s start with the filter’s name and location. Filters must be placed in the grails-app/
conf directory, and the name of the Groovy class must end with the word Filters. Since
our filters are for security, we will name the file SecurityFilters:

class SecurityFilters {

}

The next part is defining the filters. We will be defining an action called filters.
This is the method that the Grails framework will use to look for any and all filters we
have created:

class SecurityFilters {

def filters = {

}

}

With the framework set up to have the filters, now we define the filters. We can have
one or more filters defined inside the same class. If you have programmed regular servlet

CHAPTER 7 ■ SECURITY IN GRAILS 231

10450_ch07.qxd 5/20/08 10:43 PM Page 231

filters before, you will realize that this is a huge advantage; with regular servlet filters, you
must define a different class for each filter.

You can create two types of filters:

• The more traditional type, where you define the URI to be intercepted, like this:
uriCheck(uri: /user/*). The method defining this check will be intercepted any-
time anyone calls anything with the /user URI.

• Capture based on the controller and action. This way, you can capture all con-
trollers and actions or just selective ones. This is the approach we will take here.

For our application, we can either capture all controllers or be selective and individ-
ually capture certain controllers. We opted for the capture-all approach and will ignore
the login and registration page in the code. Otherwise, if we added more controllers later,
we would need to keep adding the login check code to each filter, which could get messy
fast, depending on how much functionality we add to the site. Listing 7-5 shows the final
definition of the filter.

Listing 7-5. The Filter for Securing the Application

def filters = {

collabTodoFilter(controller:'*', action:'*') {

before = {

if(!session.user

&& !controllerName.equals('login')

&& !controllerName.equals('captcha')

&& (!controllerName.equals('user')

&& !actionName.equals("register"))

) {

// There is no log access in the filter

//log.info('Redirect to login page')

redirect(controller:'login')

return false

}

}

}

}

Here, we are checking the session as well as the controller and action names. The
controllerName will tell us the controller that was just accessed. The actionName tells us the
action that was accessed. Grails injects several properties and makes them accessible in
the filters, including the following:

CHAPTER 7 ■ SECURITY IN GRAILS232

10450_ch07.qxd 5/20/08 10:43 PM Page 232

• request

• response

• session

• servletContext

• applicationContext

• params

Our custom security solution is a fairly lightweight security wrapper. For many applica-
tions, all you need to worry about is whether or not users are logged in, and this solution
handles that. However, some applications have more complex requirements. For example,
a banking application might have an administration portion of the site. The admin could
log in to the same application as the regular user, so that he could mimic being a particular
user if necessary (such as to assist a customer if she were having a problem with the online
application). At the same time, you wouldn’t want the admin to be able to do some things,
such as actually submitting a payment. Creating such a solution requires more than just
a simple authenticated validation. It requires assigning roles and permissions, and then
giving each task access based on the roles and permissions. The plug-ins covered in the
remainder of this chapter provide mechanisms for this type of security.

JSecurity
Of the roles-and-permissions–based plug-ins we cover in this chapter, JSecurity4 is the sim-
plest. In fact, this plug-in looks much like a role/permission system that you would create
for yourself. So why use it? The answer is because it offers simplicity and time-savings. This
plug-in allows you to use a system with code that has already been tested and created, and
which is not overly intrusive to your system. Additionally, it is fairly simple to use.

Like other plug-ins, JSecurity is not just a Grails-specific framework. It is a regular
Java framework with an architecture that supports multiple clients accessing a common
authentication.5 The framework even allows authentication to be specified from different
providers, although we are going to go with a simple database as the provider.

In this section, we will go over the installation and basic usage of the JSecurity plug-in.

CHAPTER 7 ■ SECURITY IN GRAILS 233

4. http://grails.codehaus.org/JSecurity+Plugin

5. http://www.jsecurity.org

10450_ch07.qxd 5/20/08 10:43 PM Page 233

http://grails.codehaus.org/JSecurity+Plugin
http://www.jsecurity.org

JSecurity Installation

The installation process is as straightforward as the usual plug-in installations. Simply
execute the following:

> grails install-plugin jsecurity

Alternatively, you can download the plug-in from http://grails.codehaus.org/
JSecurity+Plugin and install it by hand.

After installing the plug-in, you need to create the realm and domain objects, as follows:

> grails create-db-realm

JSecurity Domain Classes

With the plug-in is installed, we are ready to go. However, before we delve into the details
of how to use the plug-in, let’s take a look at what it brings us. With the plug-in, we get
a few extra domains, controllers, and GSP pages. Table 7-1 lists the domain objects pro-
vided by JSecurity.

Table 7-1. JSecurity Domain Objects

Name Description

JsecUser User object to be used for authentication

JsecRole Role object to be used for all the roles

JsecPermission Permission object

JsecRolePermissionRel Object to tie the role and the permission together

JsecUserRoleRel Object to tie the user and the role together

JsecUserPermissionRel Object to tie the user and the permission together

One of the interesting features about the plug-in is the location of these domain
objects. The create-db-realm call places these domain objects into your grails-app.
(Later, you will notice the Acegi plug-in will do the same thing.) Copying the domain
objects to grails-app/domain gives you a much easier way to customize some of those
classes. However, if you do that, and the plug-in authors update the plug-in later, it
could pose problems if the update wants you to re-create those classes to add new
functionality. Therefore, we advise leaving the classes where and how they are created.

Now let’s take a closer look at the domain objects listed in Table 7-1.

CHAPTER 7 ■ SECURITY IN GRAILS234

10450_ch07.qxd 5/20/08 10:43 PM Page 234

http://grails.codehaus.org

JsecUser

The JsecUser object will be used as the focal point for logging in to an application. Table 7-2
lists the attributes of the JsecUser object.

Table 7-2. JsecUser Attributes

Attribute Description

username Unique name used to log in to the web site

password Hashed password that is used for authentication

Recall that our custom security implementation employed MD5 hashing. In the case
of JSecurity, a shaHex algorithm is used instead.

JsecRole

The JsecRole object is made up of just one attribute, name, which will be the unique name
of the role. Remember the role names you create, since you will reuse the names when you
assign them to a user.

JsecPermission

The JsecPermission object contains the two attributes listed in Table 7-3.

Table 7-3. JsecPermission Attributes

Attribute Description

type Unique name for the permission type

possibleActions Comma-separated list of possible actions

While a string is easier to use in a test case like this, a collection is handy if you want to
create permissions in a dynamic way. The possible actions will be the actions you want
to control. In our case, we will create a permission for the create, update, and delete actions,
since these actually change data.

JsecRolePermissionRel

The JsecRolePermissionRel relationship is used to tie roles with permissions. Table 7-4
shows its attributes.

CHAPTER 7 ■ SECURITY IN GRAILS 235

10450_ch07.qxd 5/20/08 10:43 PM Page 235

Table 7-4. JsecRolePermissionRel Attributes

Attribute Description

role JsecRole associated with this permission relationship

permission JsecPermission on which this relationship is based

target Controller associated with the relationship

actions Actions that will be targeted by this permission relationship

JsecUserRoleRel

As you will see, roles do not have fine-grained control. A user either has a role or does not
have a role; there is no halfway point. As a result, JsecUserRoleRel is a simple relationship
between the user and the role. Table 7-5 lists its attributes.

Table 7-5. JsecUserRoleRel Attributes

Attribute Description

user JsecUser associated with this relationship

role JsecRole associated with the role part of the relationship

JsecUserPermissionRel

Now that we have established a user and permission, we need to have a domain to corre-
late the user with a permission. Table 7-6 shows the attributes of this domain.

Table 7-6. JsecRolePermissionRel Attributes

Attribute Description

user JsecUser associated with this permission relationship

permission JsecPermission on which this relationship is based

target Controller associated with the relationship

actions Actions that will be targeted by this permission relationship

As you can see from the properties on the domain, when using a permission, you can
narrow the user’s access with the permission based on the controller and specific actions.
This allows for fine-grained control associated with permissions.

CHAPTER 7 ■ SECURITY IN GRAILS236

10450_ch07.qxd 5/20/08 10:43 PM Page 236

JSecurity Domain Data

Now that we have the domains established, it is time to load some extra data so that we
can test the application. We will use the Bootstrap.groovy file to preload some temporary
data. The domain objects added by this role-and-permission–based application should
give you an idea of the kind of temporary data we are going to create.

We will create three different sets of data:

• Roles: We will create two basic roles to assign to the users.

• Permissions: We will create one basic permission.

• Users: We will create two users: an admin and a basic user.

Finally, we will assign the users to the roles and permissions.
The code described in the following sections should be placed in the init() method

of the Bootstrap.groovy file.

Role Definition

The following code defines two roles: one for admin privileges and another for general
privileges.

def adminRole = new JsecRole(name: 'Administrator').save()

def generalRole = new JsecRole(name: 'General').save()

Note the names. We will reuse the names when we assign them to a user.

Permission Definition

We next create a basic permission, named BasicPermission. Possible actions will be the
actions you want to control: create, update, and delete.

def perm = new JsecPermission(type: 'BasicPermission',

possibleActions: 'create,delete,update')

User Definition

We define user and admin users. These usernames correspond with the usernames that we
are creating on the User class in the Bootstrap.groovy file as well.

CHAPTER 7 ■ SECURITY IN GRAILS 237

10450_ch07.qxd 5/20/08 10:43 PM Page 237

def user =

new JsecUser(username: 'user', passwordHash: DigestUtils.shaHex('password'))

def admin =

new JsecUser(username: 'admin', passwordHash: DigestUtils.shaHex('password'))

The password is a shaHex hash, and we process it through the DigestUtils utility. (We
are encoding it as shaHex because JSecurity’s built-in login controllers will use shaHex
when we pass a password through to them.)

Role and Permission Assignment

Now that we have all the pieces of our puzzle, it is time to put them in place. We have cre-
ated our roles, permissions, and users. Now we need to correlate them for the various
relationships.

Let’s start with the roles and the users. We created two roles and two users. We assign
one role to each user. As you may have guessed, the admin role is going with the admin
user and the general role is going with the general user. We save to the JsecUserRoleRel
class. This class takes two attributes: a user object and a role object.

new JsecUserRoleRel(user: admin, role: adminRole).save()

new JsecUserRoleRel(user: user, role: generalRole).save()

Assigning the permissions is not as straightforward as assigning the roles, due to the
generally complex nature of permissions. With each of the permissions, you have four
items to worry about:

• User

• Permission previously created

• Target controller

• Target actions

The user is easy—it is the previously defined user we created earlier. The permission
refers to that all-encompassing basic JsecPermission we created earlier. The next two will
be items that we are creating on the fly now. These give the permission the specificity it
needs. The target controller is the name of the controller you are referring to—in our case,
the Todo class. The target actions are the actions this particular permission relationship
relates to. This could be all of the actions or a subset. For this example, we will create only
permissions to do updates and creations, not deletions.

new JsecUserPermissionRel(user: user, permission: perm, target: 'todo',

actions: 'create,update').save()

Now that we have all the pieces in place, let’s see how we can use them together.

CHAPTER 7 ■ SECURITY IN GRAILS238

10450_ch07.qxd 5/20/08 10:43 PM Page 238

JSecurity Usage

With the plug-in installed and the database populated, you could, in theory, run the
application, go to the to-do page, and so on. Of course, it would not really work, since we
have not told JSecurity when to log in or what to control yet. Remember this is not secur-
ing the whole web site haphazardly. We need to take care of tying everything together.

Saving the User in Session

The first problem we have is that the only thing the plug-in is saving is its own user infor-
mation. This will not help us, since all of our controllers require us to have a user in the
session. We could solve this problem in a few different ways:

• Go into the JSecurity’s AuthController class itself and add a user lookup and save
to the session. But this means updating a JSecurity plug-in class directly, and that
could cause problems if you ever want to upgrade to a new version of the plug-in.

• Have a base class that will look up the user each time from the username that is
stored by JSecurity. This approach is effective but would become repetitive.

• Take the filter route again. You know which controller method is doing the authen-
tication, so it’s a simple matter of intercepting it and saving the user to the session
on a successful authentication. This is the technique we’ll use.

Listing 7-6 shows the code for a security filter that will check after authentication if
the user was authenticated. If so, our User object is then set in the session.

Listing 7-6. The Security Filter Set to Intercept and Check Authentication

class SecurityFilters {

def filters = {

signInFilter(controller:'auth', action:'signIn') {

after = {

def securityContext = new ThreadLocalSecurityContext()

if (securityContext.authenticated) {

def user = User.findByUserName(params.username)

session.user = user;

}

}

}

CHAPTER 7 ■ SECURITY IN GRAILS 239

10450_ch07.qxd 5/20/08 10:43 PM Page 239

signOutFilter(controller:'auth', action:'signOut') {

after = {

// Put redirect here

redirect('/auth')

}

}

}

}

Notice we reference ThreadLocalSecurityContext, which is a JSecurity-specific file that
keeps track of the user, roles, and so on. We are using it here to check to make sure the
user has been authenticated. Also notice that we have added a signOutFilter, which will
be used to redirect the user to our own custom page on logout.

So now that this page is created, you can go ahead and log in and have the session
created properly. You will notice this is a page from the JSecurity plug-in but using our
template, as shown in Figure 7-4. This is how most of these plug-ins work.

Figure 7-4. The login page for JSecurity-authenticated application

Locking Down the Controller

We now have the authentication mechanism set up. When you log in, it will not only
authenticate via JSecurity, but it will also put the User object into the session; however,
in reality we have not done anything yet to secure our pages.

The task at hand is to secure our controllers. We should, in theory, secure them all,
but here we will focus on only the TodoController and look at a variety of ways to secure
the page. All of these techniques have a central theme. First, you need to extend the
JSecAuthBase class. Second, you need to overwrite the restrictions settings. In Listing 7-7, we
have the base outline of what the TodoController will look like with these two modifications.

CHAPTER 7 ■ SECURITY IN GRAILS240

10450_ch07.qxd 5/20/08 10:43 PM Page 240

Listing 7-7. TodoController Updated with the JSecurity Authentication Skeleton

class TodoController extends JsecAuthBase {

static accessControl = {

// Insert authentication here

}

// . . . the rest of the methods . . .

}

Now we will begin the process of putting data into the accessControl block. The next
examples will focus on that part of the class. As we’ve discussed, you can use role-based
restrictions or permissions-based restrictions for access control.

The idea behind role-based restrictions is that you restrict access to the controller
based on a user’s membership to the role. With JSecurity, you can do this in three ways:

• Restrict access to the entire controller to the role. For example, to secure the whole
class for anyone with the role General, add this line:

role(name: 'General')

• Restrict access to one of the actions. Let’s say you want to secure only the delete
method, but the rest of the class can be wide open. You would add an action
parameter to the role:

role(name: 'General', action: 'delete')

• Restrict access to multiple actions. If you want to secure more than one method,
you do not define multiple actions. Instead, you define an only: string. This exam-
ple secures the create, update, and delete actions:

role(name: 'General', only: ['create', 'update', 'delete'])

As you can see, securing with roles is fairly simple. And you can add multiple role
definitions to the accessControl block; you are not limited to defining just one role here.

The other type of security is permissions. Permissions really are about the same level
of difficulty to create as roles. In fact, the permissions look much like the last two roles we
created. Here is how you would create a permission on the view and just the view:

permission(perm: new BasicPermission('myTarget', ['view']), action: 'view')

And here is how you specify multiple permissions:

permission(perm: new BasicPermission('myTarget', ['modify']),

only: ['edit', 'update'])

CHAPTER 7 ■ SECURITY IN GRAILS 241

10450_ch07.qxd 5/20/08 10:43 PM Page 241

Advanced Usage

When we wrote these examples, we assumed we were going to authenticate against an
underlying database. That is one of the reasons we needed to add our own filter in the
AuthController, as we did not want to tie our Todo objects to the underlying database.

As mentioned earlier in this chapter, quite often you will not want to rely on a single
database for security. Sometimes, you will want to go against another system or an LDAP
provider. This is where realms come into play. You may have noticed that when you ran
the grails create-db-realm command earlier, a new directory called realms was created
under grails-app. The purpose of this directory is to assist in calling out to other authen-
tication methods.

Creating a new realm is relatively simple. First, you create a realm Groovy class. You can
name it whatever you like, as long as it ends with the name Realm. We recommend naming
realms after each provider you are going against; for example, if it’s LDAP, call it LDAPRealm.
Next, you define a few methods for it. Since we do not have interfaces for Groovy objects, it
will be up to you to make sure the names are all lined up correctly with the parameters. In
Listing 7-8, we have defined the skeleton structure you will need to create your realm.

Listing 7-8. The Base Outline Structure of Our LDAP Realm

class LDAPRealm {

/**

* This is the class of the token that will be used for our authentication.

* If this property is not found, then realm is not used when determining

* authentication.

*/

static authTokenClass = org.jsecurity.authc.UsernamePasswordToken

/**

* If this method is present, then it will be used to authenticate against

* the realm it takes part in. The token passed in has to be an instance

* of authTokenClass.

* If the authentication is successful, it will return a class that is an

* instance of org.jsecurity.authc.AuthenticationInfo.

* If the authentication fails, it will throw the exception

* org.jsecurity.authc.AuthenticationException.

*/

def authenticate(authToken)

/**

* Will determine if a particular user has a role or not. Returns

* true if they do, false if they don't.

CHAPTER 7 ■ SECURITY IN GRAILS242

10450_ch07.qxd 5/20/08 10:43 PM Page 242

* The first parameter passed in is a user of instance of

* java.security.Principal.The second parameter is the name of the role.

*/

def hasRole(principal, roleName)

/**

* Will determine if a particular user has a permission or not. Returns

* true if they do, false if they don't.

* The first parameter passed in is a user of instance of

* java.security.Principal. The second parameter is the name of the permission.

*/

def isPermitted(principal, permission)

}

JSecurity is a very good basic security plug-in. It is not too heavy yet provides a wide
range of functionality when it comes to roles and permissions. You might consider using
JSecurity rather than the custom implementation described in the previous section if
your security requirements are simple, because it can save time and you know the code
has been tested.

CAS
Our third option is unique from our other choices in that it is the only one that cannot
work as a stand-alone solution. The CAS Grails plug-in is a fairly simple wrapper for the
Java CAS client6 for use with a CAS server.

CAS is the Central Authentication Server developed at Yale. It is designed to allow for
a single authentication system. This is useful when you have numerous organizations or
systems that want to authenticate against the same system. For example, an insurance
company could be selling home insurance, auto insurance, investment accounts, and
term life insurance. Each of these items could be run from different business units. Each
of these business units will be developing its own web site, so their users have access to
their individual accounts. One of the biggest challenges of companies that have this type
of setup is to avoid having the sites look like they are totally separate. They will want to
allow a single sign-on. It would be annoying for your users to have to keep registering and
using different usernames and passwords for the various systems.

Another issue with corporate multiple-application development is that the applica-
tions may not all be written using the same language. You could have some applications in
Java, others in .NET, and maybe even a couple Rails applications. CAS is provider-agnostic

CHAPTER 7 ■ SECURITY IN GRAILS 243

6. http://www.ja-sig.org/products/cas/client/javaclient/index.html

10450_ch07.qxd 5/20/08 10:43 PM Page 243

http://www.ja-sig.org/products/cas/client/javaclient/index.html

and can be consumed by a variety of languages. This means you could have a .NET appli-
cation, Java application, Rails application, and so on all use the same authentication.

Since our application is not part of a multiple-application environment, the level of
sophistication provided by CAS is totally unnecessary. In this section, we will go over
some basic implementations and usage of the plug-in itself. While you will be able to
deploy and run the sample code, it will not actually authenticate against anything (we
don’t have a CAS server).

■Note This section is provided to demonstrate the use of the plug-in, and should not be considered a CAS
client/server tutorial. A basic understanding of the CAS client/server architecture may be needed in order to
fully understand the plug-in. If you want to learn more, you can check out the main CAS web site.7

CAS Installation

The installation for the CAS plug-in is straightforward and does not create any additional
artifacts in the grails-app directory; all that is created is in the plugins directory. The
plug-in can either be downloaded at http://grails.org/CAS+Client+Plugin or installed with
the following command:

> grails install-plugin cas-client

CAS Configuration

Since this application is using an outside authentication system, configuring it is rather
simple. You just need to define the URLs of the CAS servers. These definitions will go in
grails-app/conf/Config.groovy, as shown in Listing 7-9.

Listing 7-9. The Config.groovy File with the CAS Configurations

// cas client configuration, required by CasClientPlugin

cas {

urlPattern = '/someurl/*'

// urlPattern = ['/oneurl/*', '/another', '/anotheranother/*']

disabled = false

}

CHAPTER 7 ■ SECURITY IN GRAILS244

7. http://www.ja-sig.org/products/cas/

10450_ch07.qxd 5/20/08 10:43 PM Page 244

http://grails.org/CAS+Client+Plugin
http://www.ja-sig.org/products/cas

// log4j configuration

log4j {

// . . . removed for brevity . . .

}

environments {

development {

cas.loginUrl = 'https://localhost:8080/casSecurity/login'

cas.validateUrl = 'https://localhost:8080/casSecurity/serviceValidate'

cas.serverName = 'localhost:8080'

cas.serviceUrl = 'http://dev.casclient.demo.com/access'

log4j {

logger {

grails.'app.controller'="trace,stdout,logfile"

grails.app="error,stdout"

}

}

}

// . . . production and test removed . . .

}

Here, we added two sections to the Config.groovy file. The first one is a required item
for the CAS plug-in, which defines a URL pattern. The second is in the environments section,
and it is important when you want to access the CAS server itself. It defines all the URLs to
be used for filtering. These attributes once again go into web.xml, but they are added auto-
matically during compilation of the Grails application. Table 7-7 shows the additional
configuration options as well as the corresponding web.xml init-param values.

Table 7-7. CAS URL Definition Entries

Config.groovy Entry Required Web.xml Reference Value

cas.urlPattern Yes

cas.loginUrl Yes edu.yale.its.tp.cas.client.filter.loginUrl

cas.validateUrl Yes edu.yale.its.tp.cas.client.filter.validateUrl

cas.serverName Yes edu.yale.its.tp.cas.client.filter.serverName

cas.serviceUrl Yes edu.yale.its.tp.cas.client.filter.serviceUrl

cas.proxyCallbackUrl No edu.yale.its.tp.cas.client.filter.proxyCallbackUrl

cas.authorizedProxy No edu.yale.its.tp.cas.client.filter.authorizedProxy

cas.renew No edu.yale.its.tp.cas.client.filter.renew

cas.wrapRequest No edu.yale.its.tp.cas.client.filter.wrapRequest

cas.disabled No

CHAPTER 7 ■ SECURITY IN GRAILS 245

10450_ch07.qxd 5/20/08 10:43 PM Page 245

https://localhost:8080/casSecurity/login
https://localhost:8080/casSecurity/serviceValidate
http://dev.casclient.demo.com/access

■Caution cas.serverName and cas.serviceUrl are mutually exclusive. You need to fill in one or the
other, but not both.

In addition, Listing 7-9 defines one other field—the cas.disabled flag. It works as you
may have guessed. If you set it to true, the plug-in is disabled; if it is set to false, the plug-
in is enabled.

CAS Usage

The usage of the CAS security is actually entirely up to you. The main goal is to pull the
name of the logged-in user for the controller. You can then secure the controllers either
through filters or by extending the base controller classes. Listing 7-10 illustrates how to
pull the user from the session.

Listing 7-10. Retrieving the Username from the Session

def username = session?.getAttribute(CASFilter.CAS_FILTER_USER)

You could then use this in a base class’s interceptor to perform a validation, or you
could use it in a custom filter to perform the check.

The CAS security plug-in is quite easy to use and allows for simple authentication
against a middle system. As we pointed out, this can be very useful in a big corporate
system where you care about authentication. But what if you also want permission-
and role-based access? If this is a concern, our next plug-in should be of some interest
to you. The Acegi plug-in will allow you to do CAS authentication and add even more
security functionality.

Spring Security (aka Acegi Security)
Last but not least, we are going to discuss how to implement security in Grails with a
tried-and-true favorite from the Spring Portfolio: Spring Security, also known as Acegi
Security.8 The Spring Security framework is a subproject of the Spring Framework and
was designed to give developers a single place to go for security when using Spring.
Incidentally, this is also the security framework we will be using for our sample project
throughout the rest of the book.

CHAPTER 7 ■ SECURITY IN GRAILS246

8. http://www.acegisecurity.org

10450_ch07.qxd 5/20/08 10:43 PM Page 246

http://www.acegisecurity.org

One of the nicest things about the Spring Security framework is its flexibility. While it
applies patterns to secure certain areas, it also provides a multitude of options especially
for authentication. For example, out of the box, you are able to interface to the following
authentication systems:

• LDAP

• CAS

• Java Authentication and Authorization Service (JAAS)

• CAPTCHA login security

The flexibility Spring Security has is one of the main reasons for its growing popular-
ity when it comes to securing Spring applications. (Remember that Grails uses Spring as
its Inversion of Control, or IoC, pattern, and, as such, Grails is in many ways a glorified
Spring application.)

Acegi Installation

Installation of the Acegi plug-in is a relatively painless process. Either download the plug-
in from http://grails.org/Acegi+on+Grails or issue the following command:

> grails install-plugin acegi

The plug-in will install without making any changes to the grails-app file system.
As with JSecurity, we use a few command-line options to create some Groovy classes

to help set up the security apparatus. The first creates the domains:

> grails create-auth-domains

This command creates the Person, Authority, and Requestmap domain classes. These
classes will be used for all our interactions with Grails.

You can change the domain names by appending the command with the alternative
names, in the order of Person-Authority-Requestmap. For example, to change Person and
Authority to User and Role, respectively, use the following command:

> grails create-auth-domains User Role.

Note that this is not the only way to change the objects referenced. We’ll explain an
alternative in the “Acegi Domain Customization” section later in this chapter.

None of the objects to manage the classes were created with the classes. For our exam-
ples, we do not need the additional controllers and views to manage them. If you want them,
you can create them with this command:

> grails generate-manager

CHAPTER 7 ■ SECURITY IN GRAILS 247

10450_ch07.qxd 5/20/08 10:43 PM Page 247

http://grails.org/Acegi+on+Grails

Since Spring Security is adding quite a bit of functionality, you can expect quite
a few additions installed with the plug-in, including extra domain objects, controllers,
and views. This can be considered a good thing or a bad thing. Some may consider it
bad because you have your user and role objects predetermined for you. If you wanted
to, you could work around the controllers and view pages.

The point of this plug-in is to help you automate and implement Spring Security as
easily as possible. If you require customizations of the security-based objects, we suggest
either writing a class to wrap the given security classes or adding Spring Security yourself.
For our application, we want to use the Grails Acegi plug-in in all its glory.

As with the other plug-ins, let’s start with the domain classes it adds.

Acegi Domain Classes

The domain for the Acegi plug-in adds items necessary for authentication. Three domain
classes are added: Person, Authority, and Requestmap. These domains will be persisted to the
database as their tables. In addition, the database will contain a few other tables to connect
the items.

Person

The most important of the domain classes for you to deal with is the Person class. Table 7-8
shows the attributes of the Person object.

Table 7-8. Person Attributes

Attribute Description

username Login username; should be a unique name

password Hashed password to log in with

userRealName Real name of a user; another way to help identify the user

enabled Flag to determine whether this user should be able to log in

email E-mail address of the user

email_show Flag to determine whether this user’s e-mail address should be displayed

description Description of the user; you can use this to store whatever you want

authorities Used to store the roles/permissions that the person can access

All the Person attributes are not nullable, so you will need to make sure to set values
for everything, except the two Boolean values: enabled and email_show. However, these
two are false by default. This means that if you do not explicitly set enabled to true, you
are going to have a user that cannot log in, which we doubt is anyone’s goal.

CHAPTER 7 ■ SECURITY IN GRAILS248

10450_ch07.qxd 5/20/08 10:43 PM Page 248

Authority

The Authority class is in charge of creating roles that can be used for privilege creation later
on. Roles are not associated on a one-to-one basis with the Person object. The Person object
can have multiple roles assigned to it. This allows you a lot of flexibility. The Authority class
has only two attributes, as you can see in Table 7-9.

Table 7-9. Authority Attributes

Attribute Description

description Description of the role you are creating

authority Name for the role; should be unique (although this is not enforced from
a constraint level)

By standard convention, you should label all of your authorities starting with ROLE_,
although it’s really up to you what you call them. While it can be confusing that an
Authority class has an attribute labeled authority, you can think of it as a name attribute.

Requestmap

The Requestmap class is used to define which pages to secure and which kind of permission
to secure it with. Its attributes are listed in Table 7-10.

Table 7-10. Requestmap Attributes

Attribute Description

url Relative URL of the resource to protect

configAttribute Permission needed to access the resource

The url will be a relative URL, so you do not need to define the application context.
The URL form controls how security is applied:

• To secure an entire site, use /**.

• To secure an entire controller, use /controller/**. For example, /todo/** secures
any action called on the Todo controller.

• To secure a specific action on the controller, use /controller/action/**. For exam-
ple, /user/list/** secures any calls made to the list action of the User controller.

CHAPTER 7 ■ SECURITY IN GRAILS 249

10450_ch07.qxd 5/20/08 10:43 PM Page 249

As you can see, this can give you quite a bit of flexibility in defining how you want to
secure your application.

The next part is where you use the roles you defined previously. configAttribute con-
tains the attribute you are securing against. Now what may strike you at first is that this is
a string field and not an actual Authority object. The reason for this is not due to an oversight
of the developers, but because the roles you define are not the only items you can place in the
configAttribute. There are predefined security attributes, which are more general-purpose
items that allow the distinction between a new user, a returning user, and an anonymous
user. Table 7-11 shows the predefined Requestmap attributes.

Table 7-11. Preconfigured Requestmap Attributes

Attribute Description

IS_AUTHENTICATED_FULLY Do not remember me and anonymous

IS_AUTHENTICATED_REMEMBERED Remember me or is fully authenticated

IS_AUTHENTICATED_ANONYMOUSLY Remember me, anonymous, or fully authenticated

Acegi Domain Data

Now that we have the domains defined, let’s get to work. Again, we’ll first create some
temporary data in the Bootstrap.groovy file. We will add User, Authority, and Requestmap
objects. A few of these steps will resemble our creation of data earlier with the JSecurity
plug-in.

User Definition

Let’s start out with the users. For this application, we will create two users: a regular user
and an admin user. For the Acegi plug-in, passwords use md5Hex encryption. First, ini-
tialize a password that we will use for both:

def pass = DU.md5Hex("pass")

Now that we have an encrypted password, let’s create our users.

def person = new Person(username: "user", userRealName: "Joseph Nusairat",

email: "jnusairat@integrallis.com", description: "Joseph's Account",

passwd: pass, enabled: true).save()

def admin = new Person(username: "admin", userRealName: "Administrator",

email: "cjudd@juddsolutions.com", description: "Our admin", passwd: pass,

enabled: true).save()

Notice we set the enabled flag to true so we can use these users immediately.

CHAPTER 7 ■ SECURITY IN GRAILS250

10450_ch07.qxd 5/20/08 10:43 PM Page 250

mailto:jnusairat@integrallis.com
mailto:cjudd@juddsolutions.com

Authority Definition

Next, let’s create a few authority classes. We create one for user and one for admin, named
ROLE_USER and ROLE_ADMIN, respectively.

def userAuth =

new Authority(authority:"ROLE_USER", description: "Authenticated User").save()

def su =

new Authority(authority:"ROLE_ADMIN", description: "Administrator Role").save()

We now need to assign the roles to the users, since they are attached as lists. We add
the ROLE_USER to our user and the ROLE_ADMIN to our admin.

userAuth.addToPeople(person)

su.addToPeople(admin)

Requestmap Definition

Our final item to create is Requestmap. Remember that these are the entries that control
access to the site. We are not going to set up every permutation, but we will create a cou-
ple examples to play with.

new Requestmap(url:"/**",configAttribute:"IS_AUTHENTICATED_ANONYMOUSLY").save()

new Requestmap(url:"/todo/**",configAttribute:"IS_AUTHENTICATED_FULLY").save()

new Requestmap(url:"/user/list/**",configAttribute:"ROLE_ADMIN").save()

Acegi Domain Customization

As we mentioned earlier, you can change the names of the domain objects you are creating.
This is great early on in the project, when you have not yet defined the domains. However,
in our situation, we are not that lucky—we defined part of the domains back in Chapter 4.
We could take the domains out, create them via the tool, and then add them back in our
customizations—but that would be rather silly.

Luckily there is an easier way. When the Acegi plug-in creates the domain objects (even
the custom-named ones), the way it knows which class to call and which field to call is via
a mapped file. In grails-app/config, you’ll find an AcegiConfig.groovy file, which handles
the configurations. The default file is shown in Listing 7-11.

CHAPTER 7 ■ SECURITY IN GRAILS 251

10450_ch07.qxd 5/20/08 10:43 PM Page 251

Listing 7-11. The AcegiConfig.groovy Configuration File

acegi {

loadAcegi=true

algorithm="MD5"

//use Base64 text (true or false)

encodeHashAsBase64=false

errorPage="null"

/** login user domain class name and fields */

loginUserDomainClass="Person"

userName="username"

password="passwd"

enabled="enabled"

relationalAuthorities = "authorities"

/* you can specify method for to retrieve the roles.

* (you need to set relationalAuthorities=null)

*/

//getAuthoritiesMethod=null //"getMoreAuthorities"

/**

* Authority domain class authority field name

* authorityFieldInList

*/

authorityDomainClass="Authority"

authorityField="authority"

/** use RequestMap from DomainClass */

useRequestMapDomainClass = true

/** Requestmap domain class (if useRequestMapDomainClass = true) */

requestMapClass="Requestmap"

requestMapPathField="url"

requestMapConfigAttributeField="configAttribute"

/**

* To use email notification for user registration, set the following userMail to

* true and config your mail settings. Note you also need to implement the script

* grails generate-registration.

*/

useMail = false

mailHost = "localhost"

CHAPTER 7 ■ SECURITY IN GRAILS252

10450_ch07.qxd 5/20/08 10:43 PM Page 252

mailUsername = "user@localhost"

mailPassword = "sungod"

mailProtocol = "smtp"

mailFrom = "user@localhost"

/** AJAX request header */

ajaxHeader="X-Requested-With"

/** default user's role for user registration */

defaultRole="ROLE_USER"

/** use basicProcessingFilter */

basicProcessingFilter=false

/** use switchUserProcessingFilter */

switchUserProcessingFilter=false

}

In this file, you can define the following:

• Whether Acegi Security is enabled

• The type of encryption to use

• The names for the mapping of the authenticated classes and properties

• E-mail protocols for registration

• Whether the processing filters are activated

As you can see, this flexibility helps with integration of the software. For our example,
we will not use the Person class; instead, we will add fields to our existing User class.

Acegi Security Usage

So now that we have all of our data loaded, let’s start up the application server and head
to the to-do page at http://localhost:8080/acegiSecurity/todo. You will see that you are
redirected from the get-go, as shown in Figure 7-5. Behind the scenes, this differs greatly
from how the JSecurity plug-in works. Recall that with JSecurity, we defined our access
controller at the individual controller level. With the Acegi plug-in, we define it in the
Requestmap, which will use a filter behind the scenes.

CHAPTER 7 ■ SECURITY IN GRAILS 253

10450_ch07.qxd 5/20/08 10:43 PM Page 253

http://localhost:8080/acegiSecurity/todo

Figure 7-5. The login page for the Acegi plug-in

Once you log in, you will be redirected to the to-do page. So what can we do from here?
The tag libraries will make things easier.

The normal Acegi security plug-in has many custom tag libraries available. The Acegi
plug-in team has re-created these with Groovy syntax to be Grails plug-ins, as listed in
Table 7-12.

Table 7-12. Acegi Plug-in Tag Libraries

Tag Description

g:loggedInUserInfo With the parameter field, this plug-in will display the currently logged in
user.

g:isLoggedIn Used as a body encapsulation; the body will be displayed only when the
user is logged in.

g:isNotLoggedIn Used as a body encapsulation; the body will be displayed only when the
user is not logged in.

g:ifAllGranted With the parameter role, the body will be displayed if all the roles have
been granted.

g:ifAnyGranted With the parameter role, the body will be displayed if any of the roles has
been granted.

g:ifNotGranted With the parameter role, the body will be displayed only if none of the
roles has been granted.

CHAPTER 7 ■ SECURITY IN GRAILS254

10450_ch07.qxd 5/20/08 10:43 PM Page 254

We can use these tag libraries with our application as necessary. We will start by
updating the _topbar.gsp page using the isLoggedIn and isNotLoggedIn tag libraries, as
shown in Listing 7-12.

Listing 7-12. The _topbar.gsp Page Updated with Acegi Tag Libraries

<div id="menu">

<nobr>

<g:isLoggedIn>

${session.user?.firstName} ${session.user?.lastName} |

<g:link controller="user" action="logout">

<g:message code="topbar.logout" />

</g:link>

</g:isLoggedIn>

<g:isNotLoggedIn>

<g:link controller="user" action="login">

<g:message code="topbar.login" />

</g:link>

</g:isNotLoggedIn>

</nobr>

</div>

Notice that we did not use the loggedInUserInfo tag library. The purpose of this tag is
to display who is logged in; however, it displays only one field, and we want to display the
last and first name. Luckily, the Acegi plug-in puts the User object into the session for us
once it is authenticated, so we are able to have access to it in our GSP.

Summary
Security is important to any application. While most of the Grails security plug-ins are rel-
atively new and some may not be completely mature, they all are based on frameworks
that have been built over time. Each of these frameworks is progressing and will be adding
functionality rapidly until they achieve at least 1.0 release.

Choosing a security plug-in for our application was actually difficult. We went back
and forth between Acegi, JSecurity, and a custom approach. In the end, Acegi won out,
mainly for two reasons:

• It has advanced functionality that makes it more fun is use.

• Its ability to use basic authentication will be necessary in order to use our RESTful
web services in Chapter 9.

The coverage of other plug-ins should help you to select which plug-in is best for
your own application.

Now that we have security fully in place, we will be able to embrace some more user
functionality in the next chapter, which covers Ajax and other fun Web 2.0 items.

CHAPTER 7 ■ SECURITY IN GRAILS 255

10450_ch07.qxd 5/20/08 10:43 PM Page 255

10450_ch07.qxd 5/20/08 10:43 PM Page 256

Web 2.0—Ajax and Friends

So far in this book, we have relied on a few basic items to create our site, and, as of right
now, it is fully functioning. Users have the ability to log in, create to-dos, create buddies,
and so on. And while these make for a good application, good applications will not gen-
erate revenue. The Web is filled with many bad applications, quite a few good ones, and
far and few between excellent ones. In this and the following two chapters, we will try to
add some excellence to our web application by applying some Web 2.0 techniques.

What do we mean by excellence? Some developers try to cram every Ajax component
and every Web 2.0 concept under the sun into their applications. Many times, this approach
can fail. You end up overcomplicating the page and making it difficult to use. In this
chapter’s examples, we will try to toe the line between enhancing the page and making it
unmanageable. Each component we will add will supply functionality that the users
should be able to enjoy.

We will start it off slowly with some basic plug-ins that add some Web 2.0 function-
ality. From there, we will add a mail service, which we will use in this chapter and in
Chapter 10, which covers reporting. After that, we will dive into some good old-fashioned
Ajax and demonstrate the flexibility of Ajax in Grails. We will finish up with an RSS feed,
which can be useful if you want to have your to-dos displayed on an RSS reader like iGoogle.

Advanced Presentation Components
Currently, our sample application’s to-do page is pretty basic, as shown in Figure 8-1. We
can improve the application by adding functionality here.

257

C H A P T E R 8

10450_ch08.qxd 5/27/08 12:38 PM Page 257

Figure 8-1. The current to-do page in Collab-Todo

We will focus on three areas that will make this page more useful to users:

• Allow for the use of rich text in the to-do notes.

• Make the to-dos searchable.

• Allow for uploading a file associated with a to-do.

To add these features, we will make use of an ever-growing list of plug-ins for Grails.

Adding Rich-Text Capabilities

Currently, to-do note entry is very limited. You cannot style text (such as italics or bold-
face) or format it (say, into a bulleted list). We have a few ways to address this need:

HTML: Allow users to insert their own HTML code, but that would be a bad idea. Not
only would it require users to know how to do this, but if they made a mistake, it could
throw off the entire layout of the page by not closing the HTML tags.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS258

10450_ch08.qxd 5/27/08 12:38 PM Page 258

Text editor: Add a rich text editor. This type of editor can provide near Microsoft
Word–type functionality to a web site. Not only can you allow rich text, but you can
also let the users upload images, Flash movies, and even files to your web applica-
tion. The FCK editor plug-in1 is a good example of this sort of editor. Figure 8-2 shows
an example of the FCK editor embedded into an application. Although this is, as Borat
would say, “very nice,” it is a bit of overkill for our needs. Not only that, it might break
some of the smooth lines of our page.

Figure 8-2. The FCK editor plug-in in action

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 259

1. http://grails.codehaus.org/FCK+editor+plugin

10450_ch08.qxd 5/27/08 12:38 PM Page 259

http://grails.codehaus.org/FCK+editor+plugin

Wiki markup: Systems like Wikipedia and even regular homegrown content manage-
ment systems (CMS) are turning to using a markup language for their rich content.
This allows a generally more simplified system of displaying and formatting text. You
can add styles like bold and italicized text, as well as formatting like bulleted and
numbered lists. You can even use more advanced formatting for code display, such
as a dashed border with a header. Using wiki markup is becoming a popular solution
for web sites, and this is the approach we’ll take with our application.

■Note A downside to wikis is that there is no set standard. So every wiki will implement the items differ-
ently. Some wikis can be very similar, while others will differ greatly.

While there are many wiki markup solutions, we are going to use Radeox, because
Grails has a plug-in wrapper for it.2 The Radeox plug-in uses SnipSnap as its wiki engine.

As with other Grails plug-ins, you can install the Radeox plug-in by downloading from
its site at http://www.grails.org/Radeox+plugin or by using this command:

> grails install-plugin radeox

■Note At the time of this writing, the plug-in required one tweak to make it work: add a getName()

method to the GroovyMacro.groovy file in the plug-in.

Let’s start by adjusting our Bootstrap.groovy file to bold the word task in our notes.
To do this, we surround the word we want to bold with double underscores (__), as shown
in Listing 8-1.3

Listing 8-1. A Note Format Adjustment in Bootstrap.groovy

todo =

new Todo(owner: user1, category: cat1, name: 'Our First Task',

createDate: new Date(), startDate: new Date(), priority: '1',

status: '1', dueDate: new Date() + 7, lastModifiedDate: new Date(),

note: 'A note about our __task__.').save()

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS260

2. http://www.grails.org/Radeox+plugin

3. See http://snipsnap.org/space/snipsnap-help for SnipSnap text-formatting markup guidance.

10450_ch08.qxd 5/27/08 12:38 PM Page 260

http://www.grails.org/Radeox+plugin
http://www.grails.org/Radeox+plugin
http://snipsnap.org/space/snipsnap-help

If you now view the page, you won’t see the formatting added to the sentence. In
order to have Radeox format the text, you need to update the note section of the to-do
page and surround it with the <g:radeoxRender> tag, as shown in Listing 8-2.

Listing 8-2. The _detail.gsp Page Note Section Updated with the Radeox Tag

<g:radeoxRender>${todo?.note}</g:radeoxRender>

Now when the page is rendered, you will see the note with task, as shown in
Figure 8-3.

Figure 8-3. The to-do page with the Radeox plug-in in use

Adding Search Capabilities

Currently, the only way to search for a particular task is to literally open up every task and
see what is in there. While this may work if you have a small number of tasks, it will quickly
become cumbersome as the application grows—especially if the keyword you are looking
for is buried in the notes.

As in previous chapters, we are not only going to make use of a plug-in, but a plug-in
that is based on tried-and-true Java technologies. The Searchable plug-in is based on the

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 261

10450_ch08.qxd 5/27/08 12:38 PM Page 261

OpenSymphony Compass Search Engine framework,4 which in turn uses Apache Lucene
under the covers.

The Searchable plug-in is supplied with Grails. Install it by issuing the following
command:

> grails install-plugin searchable

■Note At the time of this writing, the Searchable plug-in had a mapping issue. To get it to work, you may
need to copy the directory plugins/searchable-0.4.1/grails-app/views/searchable to your main
grails-app/views directory. This will allow the search views to be local.

The Searchable plug-is a snap to set up and use. The plug-in allows you to decide
which domain objects should be searchable. We want to make the to-dos searchable, so we
add the line static searchable = true to our Todo domain object, as shown in Listing 8-3.

Listing 8-3. Marking Our Todo As Searchable in domain/Todo.groovy

class Todo {

static searchable = true

// . . . continued . . .

}

And that is really all we need to do. So what does that give us?
If you go to http://localhost:8080/collab-todo/searchable, you will see the default

searchable page. You can type in a word to search for and get the results. Figure 8-4 shows
the results of searching for task.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS262

4. http://www.opensymphony.com/compass/

10450_ch08.qxd 5/27/08 12:38 PM Page 262

http://localhost:8080/collab-todo/searchable
http://www.opensymphony.com/compass

Figure 8-4. The results of searching for the word “task”

You will notice that some of our items do not show up well. This is because these
items were formatted with wiki markup to be used with our Radeox plug-in. This really is
not acceptable, so let’s take care of that now. To fix this, we need to modify the search view
directly. We just need to change one line in grails-app/searchable/index.gsp—line 142, as
shown Listing 8-4 (which is a partial listing of the file with the modified line bolded).

Listing 8-4. Adding the Radeox Call to the Searchable Page (views/searchable/index.gsp)

<div class="result">

<g:set var="className" value="${ClassUtils.getShortName(result.getClass())}" />

<g:set var="link" value=

"${createLink(controller: className[0].toLowerCase() + className[1..-1],

action: 'show', id: result.id)}" />

<div class="name">${className} #${result.id}</div>

<g:set var="desc" value="${result.toString()}" />

<g:if test="${desc.size() > 120}">

<g:set var="desc" value="${desc[0..120] + '...'}" />

</g:if>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 263

10450_ch08.qxd 5/27/08 12:38 PM Page 263

<div class="desc">

<g:radeoxRender>${desc.encodeAsHTML()}</g:radeoxRender>

</div>

<div class="displayLink">${link}</div>

</div>

All that we had to do was wrap the response with the Radeox renderer. As shown in
Figure 8-5, the response will now be formatted properly.

Figure 8-5. The Grails Searchable plug-in with the Radeox formatting

Allowing File Uploads

Some web applications allow users to upload files. For our application, we’ll add the
ability to upload a file for each of the to-dos, and then retrieve (download) that file
later. The uploaded files can be stored either on the application server or the database
itself. For our example, we are going to store the file in the database, mainly due to ease
of doing so and because we’re working with only one file, so space is not an issue.

Uploading the File

Grails will use Spring’s file upload capability to help upload the file. Uploading a file is
a fairly simple process, requiring the following steps:

• Review necessary properties on the Todo domain.

• Add a link to upload it in our list page.

• Add configurations to the Spring resources.xml file.

• Create the necessary code in our controller to store and retrieve the file.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS264

10450_ch08.qxd 5/27/08 12:38 PM Page 264

In order to store the data, all you are required to have is a byte[] for data. But when
you return the data, the end user probably wants to have the original name of the file. In
addition, being specific about the type of data returned will help the browser know how to
process the data. For example, if it’s a PDF, the browser will automatically know to open it
as a PDF. To handle this, in Chapter 5, we added the variable associatedFile byte[] and
Strings of fileName and contentType to our Todo domain object, as shown in Listing 8-5.

Listing 8-5. Updating the Todo Domain Object (in domain/Todo.groovy)

class Todo {

User owner

Category category

String name

String note

Date createDate

Date startDate

Date dueDate

Date completeDate

Date lastModifiedDate

String priority

String status

byte[] associatedFile

String fileName

String contentType

. . .

}

Once you restart the server, it will automatically create the entry in the database as
a BLOB, or TINYBLOB if you are using MySQL.

■Caution If you are using MySQL, to allow most files to upload, you will need to change the default of
TINYBLOB for the database column to LONGBLOB.

The next part is to add a section to our page to upload the file. As shown in
Listing 8-6, we add a file upload tag after the due date.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 265

10450_ch08.qxd 5/27/08 12:38 PM Page 265

Listing 8-6. The File Upload Tag for the Todo (in views/todo/list.gsp)

<tr class='prop'>

<td valign='top' class='name'><label for='dueDate'>File:</label></td>

<td valign='top'

class='value ${hasErrors(bean:todo,field:'asociatedFile','errors')}'>

<input type="file" name="asociatedFile" />

</td>

</tr>

Performing file uploads also requires a change in the form tag itself. You must change
the form to a multipart request. To do this, add the form tag shown in Listing 8-7.

Listing 8-7. The Multipart Tag for the Form (in views/todo/list.gsp)

enctype="multipart/form-data"

Figure 8-6 shows an example of the result of our additions: a to-do being created,
with a file selected to upload.

As we said earlier, we are making use of Spring for our file upload capability, and you
will see when we update the controller next that there are calls to Spring objects. How-
ever, in order to use the Spring objects, we need to add a bean in Spring’s resources.xml
file. This is where we define Spring resources to be used in Grails. Add the lines shown in
Listing 8-8 to conf/spring/resources.xml.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS266

10450_ch08.qxd 5/27/08 12:38 PM Page 266

Figure 8-6. Choosing a file to upload with a new to-do

Listing 8-8. Adding a Bean to conf/spring/resources.xml

<bean class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

<property name="maxUploadSize"><value>1000000</value></property>

</bean>

This bean definition also allows you to specify an optional maximum for the file
upload size, so that Spring can prevent too big of a file from being uploaded.

The final step is to actually save the file. This is not too complicated, but it does
require making use of some Spring objects. We will cast the request coming in as a
MultipartHttpServletRequest and retrieve the items off the file as necessary. Listing 8-9
shows the new method to handle the file upload.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 267

10450_ch08.qxd 5/27/08 12:38 PM Page 267

Listing 8-9. The uploadFileData Method on the TodoController (in controllers/
TodoController.groovy)

import org.springframework.web.multipart.MultipartHttpServletRequest;

import org.springframework.web.multipart.commons.CommonsMultipartFile;

. . .

def uploadFileData = { todo ->

if (request instanceof MultipartHttpServletRequest) {

MultipartHttpServletRequest multiRequest

= (MultipartHttpServletRequest)request;

CommonsMultipartFile file =

(CommonsMultipartFile)multiRequest.getFile("associatedFile");

// Save the object items.

todo.fileName = file.originalFilename

todo.contentType = file.contentType

todo.associatedFile = file.bytes

}

}

Simply call this method before you persist on your save method in order to set the
appropriate properties on the Todo.

Downloading the File

Now that it is stored, we are going to want to be able to retrieve the file on the fly. The file
that is returned from the database is in a byte[], hence you can use any common method
of response rendering to render the returned item. When you return a file, you put the
byte[] into the output stream of the response, setting some header data. A basic example
of a file return is shown in Listing 8-10.

Listing 8-10. A Download File Method for TodoController (in controller/TodoController.groovy)

def downloadFile = {

def todo = Todo.get(params.id)

response.setHeader("Content-disposition",

"attachment; filename=${todo.fileName}")

response.contentType = todo.contentType

response.outputStream << todo.associatedFile

}

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS268

10450_ch08.qxd 5/27/08 12:38 PM Page 268

This method can be called by a link on our to-do page, just by passing in the ID of
the to-do. As you can see in the method, the header and contentType returns are why we
needed to save those two items in the first place.

■Caution Later in the chapter, we will switch our to-do add page to be an Ajax form submit. When that
happens, you will not be able to upload a file. This is in part due to the way Ajax sends data over to the con-
troller. At that point in our sample application, we will need to move the file upload outside the normal form
submit. You can see how that is done in this book’s downloadable source code.

Adding Mail Services

Another common feature of web sites is the ability to send e-mail from them. We will add
this capability to our application. For right now, we will use the mail service to send an
e-mail when a user registers. In Chapter 10, we will use it again to send reports.

If you are familiar with the Spring e-mail service, you will be right at home with the
Grails system, since it uses Spring Mail under the covers.

■Note There are proposals to make the Grail mail system more DSL-like. If you want to follow the latest
developments, check out the Mail from Grails page.5

We will create an e-mail service, and then adjust our user registration process to call
it and send an e-mail. This requires the following steps:

• Create the service to send an e-mail.

• Create the authenticator to be used for logging in to an SMTP server.

• Update the Spring resources.xml file.

Creating the E-Mail Service

Because Grails uses Spring’s e-mail support, we will be using the org.springframework.mail.
MailSender class to actually send the e-mail. In order to make this easier for all of us, we
are going to wrap the call to the class in a service. The service will provide an easy generic
set of parameters to send the e-mail. That way, the callers do not need to worry about
creating MIME messages. Listing 8-11 shows the EMailAuthenticatedService.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 269

5. http://grails.codehaus.org/Mail+from+Grails

10450_ch08.qxd 5/27/08 12:38 PM Page 269

http://grails.codehaus.org/Mail+from+Grails

Listing 8-11. The EMailAuthenticatedService, Responsible for Sending E-Mail

01. import org.apache.log4j.Logger;

02.

03. import org.springframework.core.io.InputStreamResource

04. import org.springframework.core.io.ByteArrayResource

05.

06. import org.springframework.mail.MailException

07. import org.springframework.mail.MailSender

08. import org.springframework.mail.javamail.MimeMessageHelper

09.

10. import javax.mail.internet.MimeMessage

11. import javax.mail.internet.InternetAddress;

12.

13. class EMailAuthenticatedService {

14. boolean transactional = false

15. MailSender mailSender

16.

17. def sendEmail = { mail, eMailProperties, attachements ->

18. MimeMessage mimeMessage = mailSender.createMimeMessage()

19.

20. MimeMessageHelper helper

= new MimeMessageHelper(mimeMessage, true, "ISO-8859-1")

21. helper.from = eMailProperties.from

22. helper.to = getInternetAddresses(mail.to)

23. helper.subject = mail.subject

24. helper.setText(mail.text, true);

25. if(mail.bcc) helper.bcc = getInternetAddresses(mail.bcc)

26. if(mail.cc) helper.cc = getInternetAddresses(mail.cc)

27.

28. attachements.each { key, value ->

29. helper.addAttachment(key, new ByteArrayResource(value))

30. }

31.

32. mailSender.send(mimeMessage)

33. }

34.

35. private InternetAddress[] getInternetAddresses(List emails) {

36. InternetAddress[] mailAddresses = new InternetAddress[emails.size()]

37. emails.eachWithIndex {mail, i ->

38. mailAddresses[i] = new InternetAddress(mail)

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS270

10450_ch08.qxd 5/27/08 12:38 PM Page 270

39. }

40. return mailAddresses

41. }

42. }

On line 15, we have a reference to MailSender. Since this is not set explicitly, you can
assume it will be injected by Grails. You will see later how we reference MailSender in
Spring’s resources.xml file.

The only public method starts on line 17. This will be the method that any clients
using the service will use. The parameters passed to it are simple. We are going to send
a mail object, which will be passed to the method as a Map.

Creating the Mail Sender

The EMailAuthenticatedSender has a MailSender as an injectable component. This is actu-
ally relatively easy to create but does require a few steps. We need to add a few entries
into resources.xml and one new service. We are going to work this a bit in reverse—we
will build up the top entries, and then go through their dependents.

We begin by defining the mailSender in resources.xml, as shown in Listing 8-12.

Listing 8-12. mailSender Defined in resources.xml

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">

<property name="host" value="smtp.apress.com" />

<property name="session" ref="mailSession" />

</bean>

As you can see, the mailSender itself defines two variables: a host and a session.
The host is a String bean identifying the host we are sending the e-mail through. For
a production server, it could very easily be localhost or anther host on the network. In
our example, we are using a fictional Apress SMTP server.

The session is a bit more complex and will require us to define another injectable
object. So, we need to add another bean, mailSession, in our resources.xml file, as shown
in Listing 8-13.

Listing 8-13. mailSession Defined in resources.xml

<bean id="mailSession" class="javax.mail.Session" factory-method="getInstance">

<constructor-arg>

<props>

<prop key="mail.smtp.auth">true</prop>

<!-- If SSL needed...

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 271

10450_ch08.qxd 5/27/08 12:38 PM Page 271

<prop key="mail.smtp.socketFactory.port">465</prop>

<prop key="mail.smtp.socketFactory.class">

javax.net.ssl.SSLSocketFactory

</prop>

<prop key="mail.smtp.socketFactory.fallback">

false

</prop>

-->

</props>

</constructor-arg>

<constructor-arg ref="smtpAuthenticator" />

</bean>

Here, we have defined the session to work with a non-SSL source, but as you can see
by the commented-out code, switching to an SSL source will be quite easy as well.

As you may have guessed, we have yet another item to inject, the smtpAuthenticator.
We need to create an object and define the bean for it. First let’s define the bean in
resources.xml, as shown in Listing 8-14.

Listing 8-14. smtpAuthenticator Defined in resources.xml

<bean id="smtpAuthenticator" class="SmtpAuthenticator">

<constructor-arg value="xxx@xxx.net" />

<constructor-arg value="xxxxxx" />

</bean>

We have defined a constructor that takes in a username and a password (blanked out
because, well, we don’t need everyone checking our e-mail).

Now we need to create a bean for this as well. We are going to create this class in the
services folder, and will simply extend javax.mail.Authenticator. Listing 8-15 shows our
authentication bean.

Listing 8-15. The Custom SmtpAuthenticator Bean

import javax.mail.Authenticator

class SmtpAuthenticator extends Authenticator {

private String username;

private String password;

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS272

10450_ch08.qxd 5/27/08 12:38 PM Page 272

mailto:xxx@xxx.net

public SmtpAuthenticator(String username, String password) {

super();

this.username = username;

this.password = password;

}

public javax.mail.PasswordAuthentication getPasswordAuthentication() {

return new javax.mail.PasswordAuthentication(username, password);

}

}

Updating the Registration Page

Now that our bean and all of its subcomponents have been defined, it’s time to put it to
use. We will modify the registration page to send an e-mail message. Listing 8-16 shows
the method that we will use.

Listing 8-16. Registration Page to Send E-mail (in controller/UserController.groovy)

private sendAcknowledgment = { user ->

// Let's first design the email that we want to send

def emailTpl = this.class.classloader.getResource(

"web-app/WEB-INF/templates/regisrationEmail.gtpl")

def binding = ["user": user]

def engine = new SimpleTemplateEngine()

def template = engine.createTemplate(emailTpl).make(binding)

def body = template.toString()

// Set up the email to send.

def email = [

to: [user.email],

subject: "Your Collab-Todo Report",

text: body

]

try {

// Check if we "need" attachments

eMailAuthenticatedService.sendEmail(email, [])

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 273

10450_ch08.qxd 5/27/08 12:38 PM Page 273

} catch (MailException ex) {

log.error("Failed to send emails", ex)

return false

}

true

}

This e-mail call is actually relatively simple. We will pass in a map defining the To and
Subject lines and text. The email message body is generated by using a Groovy tem-
plate engine on the file registrationEmail.gptl.

Note that you can reuse this code in other places to send e-mail messages.

Tag Libraries
Tag libraries provide sets of custom actions that you perform inside pages. Generally, the
actions are repetitive or would be too long to write scriptlets within the page.

You have seen many of the Grails built-in tag libraries in use in our examples so far.
We have used these tags to output data, render lists, and so on, and we will continue to
use them throughout the book. See the “Grails Tags” section in Chapter 5 for an overview
of the Grails tags.

Here, we will cover how to create your own custom tag library. If you have created tag
libraries in the past with Java frameworks, you know that it is actually quite a pain. Your
tag library class must extend a base class. You then need to define the tag and its attributes
in your tag library definition. Optionally, you can then reference that tag library in the
web.xml. Finally, you reference the specific tag you are using in the page itself. Wow—that’s
quite a bit of work just to create something that may be only a formatter. Fortunately, cre-
ating a tag library with Grails is simpler than that.

You may have noticed that on our application’s to-do page, the option to add a to-do is
always shown. But users may go to that page and just want to see the list. It would be good
to be able to hide the add section and open it when necessary. We can create a tag library to
handle this. It will mark an area with div tags and allow the user to click a JavaScript link to
open that section. Creating this will require two sets of code segments: one to display the
JavaScript and the other to actually call that JavaScript for any div section. Normally, with
JSP, this would require two classes and a host of XML. Thanks to Grails, we can handle this
with one class and no XML.

Creating the Tag Library

Tag libraries reside in the grails-app/taglib folder, so that is where we will create our new
tag library. Listing 8-17 shows the outline of our tag library with all the global objects we
will be using.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS274

10450_ch08.qxd 5/27/08 12:38 PM Page 274

Listing 8-17. The ShowHideTagLib Outline

class ShowHideTagLib {

}

As you can see, this doesn’t contain much, and that’s because this is all we need for
the basic outline.

We are actually creating two separate tag libraries. While this is normally done with
different classes, with Grails, we merely have separate methods. Listing 8-18 shows the
methods we are adding to ShowHideTagLib.

Listing 8-18. The Contents of ShowHideTagLib

def showHide = { attrs, body ->

def divId = attrs['update']

out << """${body()}"""

}

def preLoadShowHide = { attrs, body ->

out << """<script language="javascript">

<!--

function showhide(layer_ref) {

// Let's get the state.

var state = document.getElementById(layer_ref).style.display;

if (state == 'block') {

state = 'none';

} else {

state = 'block';

}

if (document.all) { //IS IE 4 or 5 (or 6 beta)

eval("document.all." + layer_ref + ".style.display = state");

}

if (document.layers) { //IS NETSCAPE 4 or below

document.layers[layer_ref].display = state;

}

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 275

10450_ch08.qxd 5/27/08 12:38 PM Page 275

if (document.getElementById &&!document.all) {

hza = document.getElementById(layer_ref);

hza.style.display = state;

}

}

//-->

</script>

"""

}

Here, we have two tag library calls. Each of them shows how great it is to use Groovy
when creating tag libraries.

Since creating tag libraries requires the output of the code to be HTML markups, this
generally involves quite a bit of string building. Not only that, but when you have output
with quotation marks, you need to escape them with \ throughout the code. Yuck! How-
ever, with Groovy, we can use triple quotes. The triple quote style allows us to not only
fully embed strings with markups, but also to return characters and referenced values.

The first method, showHide, passes in two objects: attrs and body. The body is simply the
section of the page between the opening and closing bracket of your tag library. The attrs is
a map of attributes you want to pass into the method. With regular JSP tag libraries, you
need define them individual as getters and setters on the page, and in the tag library XML.
With Grails and Groovy, that is not necessary. As you can see, we have mapped a value
called update, which is the div tag section we want activated.

The second method, preLoadShowHide, actually doesn’t contain any dynamic code per
se. We are simply outputting the JavaScript in there.

Referencing the Tag Library

Referencing the tag library is simple as well. By default, the tag library is referenced in the
g namespace—the same one in which all the built-in Grails tags are referenced. Then the
method name is used as the tag’s reference name. Listing 8-19 shows the calls to the tags
in todo/list.gsp.

Listing 8-19. Excerpts from todo/list.gsp Showing the Calls to the Custom Tags

<g:preLoadShowHide/>

<g:javascript library="scriptaculous" />

<div class="body">

<h2>Todo List<g:showHide update="addToDo">

<img border=0 src="${createLinkTo(dir:'images',file:'add_obj.gif')}"

alt="[ADD]"/>

</g:showHide>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS276

10450_ch08.qxd 5/27/08 12:38 PM Page 276

But what if you don’t want to use the g namespace? Perhaps you are bundling the
application as a tag library and are worried about name conflicts, or you simply want to
remember it’s not part of the core Grails functionality. In order to change the namespace
used, add a static namespace reference in your tag library. For example, to use the name-
space todo for our code, you would add the following line to ShowHideTagLib:

static namespace = 'todo'

Ajax in Grails
We certainly could not have a Web 2.0 chapter without including a discussion of Ajax.
Ajax stands for Asynchronous JavaScript and XML, which oddly enough, is not a 100%
accurate definition. Although Ajax is usually asynchronous, usually written in JavaScript,
and often deals with transmission of XML, none of these items is a must for it. You can
send Ajax messages synchronously, you do not have to use JavaScript to send them, and
your response can be an XML file but can also be a regular string.

■Note The term Ajax was originally coined by Jesse James Garrett. But the technology was first developed
by Microsoft in an attempt to deal with remote scripting.

One of the biggest “secrets” about Ajax is that, for the most part, it’s really not that
complex, at least conceptually. There is nothing you can do with Ajax that you could not
do in a normal application; however, using Ajax can help your application not only per-
form better, but also give a richer user experience.

The core of Ajax is just sending data to the server and parsing the data on the return
without forcing the display to refresh. The complexity lies in making use of the data, and
this is where you start to see frameworks emerge. The fact is that these frameworks are
not 100% Ajax—if they were, they wouldn’t be very big. Instead, these frameworks wrap
Ajax with JavaScript UI enhancements. Some of the calls won’t even involve Ajax. How-
ever, here we will refer to these frameworks as Ajax frameworks.

Using Ajax Frameworks in Grails

Popular Ajax frameworks include Prototype, Dojo, script.aculo.us, and Yahoo! User Interface
(YUI) Library. Even Google has come onboard with its own rather complex Ajax framework,
Google Web Toolkit (GWT).

Most of the popular web frameworks have implemented Ajax. The majority of these
did not create their own Ajax framework, but merely wrapped code from previous Ajax

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 277

10450_ch08.qxd 5/27/08 12:38 PM Page 277

frameworks. Ruby on Rails uses script.aculo.us, Tapestry’s Tacos uses Dojo, and so on. So
what does Grails use? The answer is all of the above.

In an effort to provide maximum flexibility, Grails currently accepts all of the frame-
works out there. So what does this mean? Is this good or bad? It’s a bit of both. While it
allows us more flexibility in choosing a framework, in the end, we need to write more
code than other frameworks usually demand, especially when it comes to the JavaScript
UI portions of the Ajax items. If you are familiar with other Java or Rails Ajax uses, this
will become apparent to you in the upcoming examples.

Using an Ajax framework is relatively simple. You define at the top of your page (or in
the main page) which Ajax framework to use with a <g:javascript> tag. The following define
Prototype, YUI, script.aculo.us, and Dojo, respectively:

<g:javascript library="prototype" />

<g:javascript library="yahoo" />

<g:javascript library="scriptaculous" />

<g:javascript library="dojo" />

The only slight difference is if you want to use Dojo. Since Dojo is a notoriously large
framework, it has not been included by default with Grails. You will need to download and
install it with the following command:

> grails install-dojo

Each of these frameworks has its own custom UI components. If you are familiar with
Rails or Tapestry’s Tacos, you know that they generally provide complete support for the
underlying framework. In other words, there is usually a tag library wrapper for the whole
framework. This makes it easy to not only support the Ajax components, but also the
JavaScript components. Unfortunately, this is not the case in Grails. Grails supports just
the standard Ajax components, as listed in Table 8-1. However, this does give us a good
subset of components to use.

Table 8-1. Ajax Components in Grails

Tag Description

remoteField Creates a text field that sends its value to a remote link when it changes

remoteFunction Creates a remote JavaScript function that can be assigned to a DOM event

remoteLink Creates a link that calls a remote function

formRemote Creates a form that executes an Ajax call on submission

javascript Loads a JavaScript function

submitToRemote Creates a button that submits the form as an Ajax call

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS278

10450_ch08.qxd 5/27/08 12:38 PM Page 278

For our examples, we are going to use script.aculo.us. We chose this framework
because it supports the UI features we want to use. Also, since Grails is often compared
to Ruby on Rails, which uses script.aculo.us, we thought that using the same Ajax frame-
work would help provide a more direct comparison.

Now we will use Ajax to spice up our to-do page. We will go over three basic examples:

• Rendering parts of pages with form submissions

• Editing a field in place dynamically

• Showing a drop-down list of choices while typing in place (using the autocomplete
feature)

Some of these will be simpler than others to implement. These examples will give you
a good starting point for creating your own Ajax components.

Dynamic Rendering of Data

Our first example demonstrates using one of the most basic and popular types of Ajax
components. This is where you type data into the page, submit it, remotely call the server,
process the data, and re-render only a portion of the page. For our example, we are going
to modify the to-do add page to do a partial page re-rendering. Now when adding a new
to-do, instead of doing an entire page refresh, the page will dynamically render the to-do
list section of the page.

In order to perform this, we need to take a few steps, the first of which is not neces-
sarily Ajax-specific:

• Move the list section of the page into its own page (called a template or partial page).

• Change our current add call to do an Ajax remote call instead of submitting the
whole page.

• Change the TodoController’s return to render the new page we created instead of
the whole page.

■Note One of the big issues you will run into when performing the dynamic rendering of data is partial
page updates. Partial page updating refers to re-rendering a part of the page. Some frameworks, like Tapes-
try’s Tacos, allow you to perform this in line. However, the majority of web frameworks, including Grails and
Ruby on Rails, force you to call to another page. In reality, this is not a big deal. It does add to the number of
GSPs you need to write, but on the plus side, it keeps the GSPs clean.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 279

10450_ch08.qxd 5/27/08 12:38 PM Page 279

Rendering a Template

Rendering a page from another page is actually fairly simple. First, we need a page to call
from, which obviously must be a GSP page. We will use the <g:render /> tag library to define
the area of the page that will be calling out to another GSP page. Grails refers to these partial
pages as templates.

Our first step is to take our list of to-dos in todo/list.gsp and pull that section out to
its own page. We will replace the list with what is in Listing 8-20. Also, instead of taking
the entire code, we will take everything but the for loop. This is because we can tell the
renderer to render a collection.

Listing 8-20. A Template of todo/list.gsp with the Modified To-Do List Display

<div id="todoList">

<g:render template="detail" var="todo" collection="${todoList}" />

</div>

Here, we simply tell Grails to take our collection labeled todoList and iterate through
the list, rendering the detail page each time for every item in the collection. The item in
the collection is then referenced in the page by the variable var.

■Caution By default, the var field is optional. If you did not use the field, you would be able to access the
information in the template using the reserved word it. However, while this does work, it can present prob-
lems if your template references other templates or other tag libraries. So we suggest that you always use
var when creating the renders.

Creating a Template

The name of the page we are creating will not actually be detail.gsp. Instead, Grails
chooses the page to render by taking the rendered template attribute and adding under-
scores at the beginning to indicate the page is a template. The page must also be located
in the same directory as the calling controller. Thus, for this example, we will create
_detail.gsp in the todo directory, as shown in Listing 8-21.

Listing 8-21. The _detail.gsp Page

<div id="todoDetail${todo.id}" class="todo">

<div class="todoTitle">${todo.name?.encodeAsHTML()}

<g:link action="edit" id="${todo.id}">

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS280

10450_ch08.qxd 5/27/08 12:38 PM Page 280

<img border=0

src="${createLinkTo(dir:'images',file:'write_obj.gif')}" alt="[EDIT]"/>

</g:link>

<g:remoteLink

action="removeTask"

id="${todo.id}"

update="todoDetail$todo.id"

onComplete="highlight('todoDetail$todo.id');">

<img border=0 src="${createLinkTo(dir:'images',file:'delete_obj.gif')}"

alt="[EDIT]"/>

</g:remoteLink>

<g:showHide update="todoDetailFull${todo.id}">

<img border=0

src="${createLinkTo(dir:'images',file:'add_obj.gif')}"

alt="[Show All]"/></g:showHide>

</div>

<div id="todoDetailFull${todo.id}" class="todo" style="display:none">

Status: ${todo.status?.encodeAsHTML()}

Priority: ${todo.priority?.encodeAsHTML()}

Created date: ${todo.createDate?.encodeAsHTML()}

Last Modified date: ${todo.lastModifiedDate?.encodeAsHTML()}

<g:if test="${todo.completeDate == null}">

Complete Task: <input type="checkbox"

onclick="${remoteFunction(

action:'completeTask',

id:todo.id,

update:'todoDetail' + todo.id,

onComplete:'highlight(\'todoDetail' +

todo.id+'\')')};"/>

</g:if>

<g:else>

Completed Date: ${todo.completeDate?.encodeAsHTML()}

</g:else>

<!-- show notes -- mark in the code that we should use a todo -->

<g:radeoxRender>${todo?.note}</g:radeoxRender>

<!-- update:[success:'great', failure:'ohno'], -->

<!--

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 281

10450_ch08.qxd 5/27/08 12:38 PM Page 281

<g:remoteLink action="showNotes" id="${todo.id}"

update="todoDetailNote${todo.id}">

Notes

</g:remoteLink>

<div id="todoDetailNote${todo.id}">

</div>

-->

</div>

</div>

Our first step is complete. In reality, there is nothing in the page that is Ajax-enabled
yet. Right now, the page works exactly as it did before, and in theory, you could have used
these techniques to help segregate the code.

Making the Page Dynamic

Now we will do the partial page form rendering, which is a two-step process:

• Change the form to take an Ajax form tag.

• Have the save call on the controller render the tag instead of the whole page.

For the first part, change the form encapsulation in list.gsp to the code shown in
Listing 8-22.

Listing 8-22. Adding an Ajax Form Tag (in views/todo/list.gsp)

<g:formRemote name="todoForm"

url="[controller:'todo',action:'save']"

update="todoList"

onComplete="showhide('addToDo')"

enctype="multipart/form-data">

. . .

</g:formRemote>

This calls the save action on our TodoController, and then on completion, hides the
add section. In addition, the update attribute will tell us which <div> section we are
updating. In Listing 8-21, notice that we surrounded our rendered items with the <div>
tag todoList. This will be the section that the Ajax JavaScript will re-render upon return.

The changes to the save action are equally as easy. Instead of the standard return,
where we redirect to the list page, we have a line to get the collection and call out to
render the GSP we marked, as shown in Listing 8-23.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS282

10450_ch08.qxd 5/27/08 12:38 PM Page 282

Listing 8-23. Rendering Just the Tag (in views/todo/list.gsp)

render(template:'detail', var: 'todo', collection:listByOwner())

As you can see, besides having to move some data, this was all relatively simple as
can be. And that is all that is needed. If you go back to the page now, it will do an update
without needing to return the whole page.

■Note In the downloadable code, you will find that we have also changed the buddy list sections to do
partial page re-rendering. So when you create a new buddy list or add a buddy to a list, those sections will
be re-rendered as well.

Editing a Field in Place

The previous example involved editing an entire form; however, this is not always neces-
sary. Sometimes all we need is to alter one field, or we want to allow users to update one
field at a time.

In our application, when you add a buddy, the nickName (which is the name displayed
on the screen) stored in BuddyListMember defaults to the name of the buddy. What if you
wanted the nickName to be something different? It would be a bit silly to have to go all the
way to an edit page just to change one field. Also, what if, in the case of buddy list members,
you had many buddies in different lists that you wanted to update quickly? The easiest way
would be to just click the name and be able to change the name on the fly. In this section,
we’ll add editing-in-place capabilities for these items.

In the previous section, we relied entirely on the Grails Ajax tag libraries. In fact, the
previous code would have not changed whether we used script.aculo.us, Dojo, or another
Ajax framework. However, that all changes for this and the following section, where we will
be making use of calls specific to script.aculo.us.

For our example, we are going to use the buddy list name itself, although this will work
with any of the dynamic fields on the page. When you click the name, the name will switch
to an input box with ok and cancel buttons.

■Note As we mentioned earlier, we have also implemented the dynamic rendering for the buddy list and
the buddies. This is why the GSP code is in a different place than in previous chapters.

First, let’s update the code. The code in question is in common/_buddyList.gsp. So we
will change it from a regular display to a custom tag library, as shown in Listing 8-24.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 283

10450_ch08.qxd 5/27/08 12:38 PM Page 283

Listing 8-24. The Buddy List Name Display Updated for Editing in Place (in views/
common/_buddyListMember.gsp)

<g:editInPlace id="buddyListName${list.id}"

url="[controller: 'buddyList', action: 'editName', id:list.id]"

rows="1"

cols= "10"

paramName="name">${list.name}</g:editInPlace>

Our custom tag library will be defining a few items: the ID of the area we are updat-
ing, the standard URL, and the parameter from the body of the text that will be passed
through. The rows and columns are used to define the size of the input box itself.

■Tip If you are developing an application where the field could potentially be very small or very large, you
may want to create a method in the tag library that would dynamically size it based on the text length.

Let’s move on to the tag library itself, which is shown in Listing 8-25.

Listing 8-25. The AjaxTag Library with the editInPlace Method

class AjaxTagLib {

def editInPlace = { attrs, body ->

def rows = attrs.rows ? attrs.rows : 0;

def cols = attrs.cols ? attrs.cols : 0;

def id = attrs.remove('id')

out << ""

out << body()

out << ""

out << "<script type='text/javascript'>"

out << "new Ajax.InPlaceEditor('${id}', '"

out << createLink(attrs)

out << "',{"

if(rows)

out << "rows:${rows},"

if(cols)

out << "cols:${cols},"

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS284

10450_ch08.qxd 5/27/08 12:38 PM Page 284

if(attrs.paramName) {

out << """callback: function(form, value) {

return '${attrs.paramName}=' + escape(value) }"""

}

out << "});"

out << "</script>"

}

}

As you may have noticed, we took the script.aculo.us call and converted it into a tag
library. There’s nothing too complex here, but it makes the page much more readable in
the end.

The final step is the creation of the method to actually change the name. This method
will be located in the BuddyListController, and will update the buddy list with a new name,
save it, and re-render the section. Listing 8-26 shows this editName method.

Listing 8-26. The editName Method in the BuddyListController (in controller/
BuddyListController.groovy)

def editName = {

log.info "Update buddy list name"

// Retrieve member

def buddyList = BuddyList.get(params.id)

buddyList.name = params.name

// Render a new page.

render params.name

}

Now let’s take a look at this method in action. Figure 8-7 shows what happens after
you click a buddy name.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 285

10450_ch08.qxd 5/27/08 12:38 PM Page 285

Figure 8-7. Editing in place

After you click ok, you will see indications that the changes are being applied (a “work-
ing” icon and then some highlighting), and then the update will be made. Figure 8-8 shows
an example of changing “Co-Workers” to “Fav Workers.”

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS286

10450_ch08.qxd 5/27/08 12:38 PM Page 286

Figure 8-8. The buddy list name is changed to Fav Workers.

As you can see, this code is fairly simple, and with the tag library, we can easily insert
this logic anywhere into our application.

Using the Autocomplete Feature

The final Ajax feature we will add is dynamic rendering of drop-downs. This is another fairly
new and cool feature being employed by web sites. The autocomplete feature allows a drop-
down list of matching selections to be displayed and updated as the user types. This can be
good for helping users complete an entry that must be exact. Here, we will use this feature
for adding buddies to an existing buddy list.

Figure 8-9 shows an example of how autocomplete will work once we have com-
pleted this example, On the page, we expanded the add section and started to type in
the text field, beginning with the letter j. In this case, since each of the authors’ names
(first or last) starts with a J, it found all of us. From here, you can select the buddy you
want to add and press Enter, and he will be added to the list.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 287

10450_ch08.qxd 5/27/08 12:38 PM Page 287

Figure 8-9. Our drop-down box after typing in “j”

Before the Ajax functionality, there was a simple form submit. We are going to adjust
this using two techniques we have already covered: change the form to a <g:formRemote>

tag and use an Ajax call specific to script.aculo.us. Listing 8-27 shows the added remote
form tag, complete with the definition of the area we are going to update.

Listing 8-27. The Remote Form Call for Adding a Buddy to the Buddy List (in views/
common/_buddyList.gsp)

<g:formRemote name="buddyListForm${list.id}"

url="[controller:'buddyListMember',action:'add']"

update="buddyListMembers${list.id}"

onComplete="showhide('buddyListAdd${list.id}')">

. . .

</g:formRemote>

Now we get to the script.aculo.us part. Here, the code can get a bit trickier. We are
going to adjust the input text box to have an ID assigned to it. After that, we will start an
Ajax call to monitor any input to it. If text is typed, it will make an Ajax call and create the
drop-down list you saw in Figure 8-8. The code that performs this operation is shown in
Listing 8-28.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS288

10450_ch08.qxd 5/27/08 12:38 PM Page 288

Listing 8-28. Ajax Code to Create the Dynamic Drop-Down (in views/common/_buddyList.gsp)

<div id="autocomplete_choices${list.id}" class="autocomplete"></div>

<script type="text/javascript">

new Ajax.Autocompleter("autocomplete${list.id}",

"autocomplete_choices${list.id}",

"/collab-todo/user/findUsers",

{afterUpdateElement : getSelectionId${list.id}});

function getSelectionId${list.id}(text, li) {

document.buddyListForm${list.id}.userNameId.value = li.id;

}

</script>

Since our methods no longer redirect to a new page, we need to change the final ren-
der so that it renders the buddy list subpage again. This is accomplished with the line of
code shown in Listing 8-29.

Listing 8-29. Rendering the Subpage (in views/common/_buddyList.gsp)

render(template:'/common/buddyListMember', var: 'buddy',

collection:BuddyListMember.findAllByBuddyList(member.buddyList))

Since we are doing a dynamic lookup of names, this is not the only method we need.
We will create a new method that will use the Criteria query operation, similar to the one
we looked at in Chapter 6. This method will find the users based on what the user is typ-
ing and will look for the first name, last name, or username, and then return the list, as
shown in Listing 8-30.

Listing 8-30. The UserController findUsers Method (in controller/UserController.groovy)

def findUsers = {

// Let's query the database for any close matches to this

def users = User.createCriteria().list {

or {

like("userName", "%${params.userId}%")

like("firstName", "%${params.userId}%")

like("lastName", "%${params.userId}%")

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 289

10450_ch08.qxd 5/27/08 12:38 PM Page 289

}

order("lastName")

order("firstName")

}

// Let's build our output XML

def writer = new StringWriter()

// Build it

new groovy.xml.MarkupBuilder(writer).ul {

for (u in users) {

li(id: u.id, "${u.lastName}, $u.firstName")

}

}

render writer.toString()

}

The Criteria query was only half of the work. The other half is to tell the browser how to
render the information we are passing back. By default, for autocomplete, script.aculo.us
expects an unnumbered list to be returned to it. Once it receives that, it can properly parse
the return. Luckily for us, there is a really easy way to create an unnumbered list or any XML
with Groovy. We can use the MarkupBuilder to create a bulleted list of unordered elements,
so that the string returned in Listing 8-30 will actually look like the following:

Nusairat, Joseph

Judd, Chris

Shingler, Jim

Now we have one final task to perform. If you have been coding along with the exam-
ple, and have entered the code and tried to render it, you will get a drop-down list, but it
will be difficult to read. This is because the default style is used. The solution to this is
quite simple: for the autocomplete items, we will create a CSS style that will help set it
apart. We will use yellow with some bold when highlighting, as shown in Listing 8-31.

Listing 8-31. CSS Style Addition for the Dynamic Drop-Down (in main.css)

div.autocomplete {

position:absolute;

width:250px;

background-color:white;

border:1px solid #888;

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS290

10450_ch08.qxd 5/27/08 12:38 PM Page 290

margin:0px;

padding:0px;

}

div.autocomplete ul {

list-style-type:none;

margin:0px;

padding:0px;

}

div.autocomplete ul li.selected { background-color: #ffb;}

div.autocomplete ul li {

list-style-type:none;

display:block;

margin:0;

padding:2px;

height:32px;

cursor:pointer;

}

Once you have updated the main.css file, your code should render correctly and save
correctly as well.

RSS Feeds
RSS feeds have become an increasingly popular feature to incorporate on a web site.
What has contributed to RSS feed popularity is the increasing number of RSS readers
out there, including the new iGoogle6 and the RSS Web Clip in Gmail. So we are going
to go over creating a basic RSS reader. This will be an extremely basic example; in a
real-world application, you would want to add more items for security checking.

Creating an RSS feed basically requires creating an XML output in a fairly strict format.
The reader then takes that XML and parses it for content.

We could do this by hand, but the format based on the feeds can be somewhat com-
plex, and you would also need to write quite a bit of repetitive code. Luckily, there is as
plug-in that will help us cheat a bit and create the feeds. The Feeds plug-in7 supports
creating feeds in the popular RSS and Atom formats (with multiple versions of each sup-
ported). Start by installing the plug-in:

> grails install-plugin feeds

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 291

6. http://www.google.com/ig

7. http://grails.codehaus.org/Feeds+Plugin

10450_ch08.qxd 5/27/08 12:38 PM Page 291

http://www.google.com/ig
http://grails.codehaus.org/Feeds+Plugin

The next step is to create a controller with one method in it. This method will be render-
ing the XML in a way that the renderer can understand. For this example, we will use the
Atom format to format the output. Listing 8-32 shows our RSSController with a feed method.

Listing 8-32. Our RSSController with the feed Method (in controller/RssController.groovy)

import feedsplugin.FeedBuilder

class RssController {

def feed = {

render(feedType:"atom") { // optional - , feedVersion:"2.0") {

title = "Todo List"

link = http://localhost:8080/collab-todo/rss

Todo.list(sort: "name", order: "asc").each {

def todo = it

entry(it.name) {

title = "${todo.name}"

link = "http://localhost:8080/collab-todo/todo/view/${todo.id}"

author = "${todo.owner.lastName}, ${todo.owner.firstName}"

}

}

}

}

}

Here we use a standard renderer, and in it we define a few items. We define the title
and the link. Then we iterate through a list of items queried from the database sorted in
ascending order. For each item, we need to define an entry. The entry has three items on
it: the title for it, a URL link for it, and its contents. Table 8-2 lists a few of the common
fields you would expect to have in a feed.

Table 8-2. Some Common Fields for a Feed

Field Name Description

publishedDate The date the entry of the field is published

categories The list of categories related to the entry

author The name of the author of the entry

link The link to a full description of the entry

title The title of the entry

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS292

10450_ch08.qxd 5/27/08 12:38 PM Page 292

http://localhost:8080/collab-todo/rss
http://localhost:8080/collab-todo/todo/view

In our example, we used title, link, and author. We sorted based on creation date
(actually, we could have sorted based on anything). Note that if you supply publishedDate,
then your feeder may automatically sort on that date instead. An example of the output
for this example is shown in Figure 8-10.

Figure 8-10. Our RSS reader in a Safari browser

Summary
This chapter was the start of transforming our working to-do application into a more
robust application. We added features that not only make it more useful, but also make
it more visually appealing as well as easier to use. These characteristics are extremely
important for a web site.

Consider two web sites that both let you monitor your money: http://www.mint.com
and https://moneycenter.yodlee.com. The latter, in our opinion, is far more useful and has
more features. However, most people enjoy mint.com, simply because it is more user-friendly
and eye-catching. As you develop Grails (and other) applications, keep that in mind. Some-
times what makes a site a winner is not what it has, but how easy and enjoyable it is for the
users.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS 293

10450_ch08.qxd 5/27/08 12:38 PM Page 293

http://www.mint.com
https://moneycenter.yodlee.com

The purpose of this chapter was to expose you to a variety of more advanced web-
styling techniques for our application. There are more Ajax techniques and plug-ins
available on the Grails site. We suggest taking a peek to see if any meet your needs. And if
they don’t, you always have the option of creating your own plug-in and joining the Grails
community that way.

In the next few chapters, we will expand the to-do application and add even more
functionality, including reporting and batch jobs.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS294

10450_ch08.qxd 5/27/08 12:38 PM Page 294

Web Services

Up until this point, you have seen how you can use Grails to develop user-oriented web
applications. This chapter focuses on how to use web services to expose your application
functionality to other applications. You can also use the techniques discussed in this chap-
ter to drive Web 2.0 Ajax-enabled web applications, like those discussed in Chapter 8.

Originally, web services grew in popularity as a means for system integration. But with
the recent popularity of sites such as Google Maps1 and Amazon.com,2 and social net-
working sites like Facebook,3 there is an expectation that public APIs should be offered so
users can create new and innovative client applications. When these clients combine mul-
tiple services from multiple providers, they are referred to as mashups.4 They can include
command-line applications, desktop applications, web applications, or some type of
widget.

In this chapter, you will learn how to expose your application functionality as a Rep-
resentational State Transfer (REST) web service by extending the Collab-Todo application
to provide access to domain objects. This RESTful web service will be able to return either
XML or JavaScript Object Notation (JSON), depending on the needs of the client applica-
tion. This web service will also be designed to take advantage of convention over configuration
for exposing CRUD functionality for any Grails domain model, similar to the way Grails
scaffolding uses conventions to generate web interfaces. Finally, you will discover how to
write simple client applications capable of taking advantage of the web service. In Chap-
ter 13, the web services exposed in this chapter will be utilized by a desktop application
developed in Groovy.

295

C H A P T E R 9

1. http://www.google.com/maps

2. http://www.amazon.com

3. http://www.facebook.com/

4. http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

10450_ch09.qxd 5/20/08 10:44 PM Page 295

http://www.google.com/maps
http://www.amazon.com
http://www.facebook.com
http://en.wikipedia.org/wiki/Mashup_

RESTful Web Services
REST is not a standard or specification. Rather, it is an architectural style or set of prin-
ciples for exposing stateless CRUD-type services, commonly via HTTP. The primary
principles are as follows:

• Entities must be accessable via a URI with a unique identifier.

• Access is achieved via standard methods such as HTTP’s GET, POST, PUT, and DELETE.

• Communication between the client and the service should be stateless.

• Associated entities should be linked together.

You can distill these principles to provide URLs with nouns. The pattern for a URL
looks like this:

http://<server>/<context>/<entity>/<id>

where the entity could be the Grails domain model, and the id is the unique identifier of
the domain instance. An example in the Collab-Todo application might look like this:

http://localhost:8080/collab-todo/todo/1

In this example, a representation of the Todo object with an id of 1 could get returned
as XML, as shown in Listing 9-1.

Listing 9-1. XML Representation of a Todo Object Returned from a RESTful Web Service

<todo id="1">

<completedDate>2007-12-11 11:08:00.0</completedDate>

<createDate>2007-12-11 00:15:00.0</createDate>

<dueDate>2007-12-11 11:08:00.0</dueDate>

<name>Expose Web Service</name>

<note>Expose Todo domain as a RESTful Web Service.</note>

<owner id="1"/>

<priority>1</priority>

<status>1</status>

</todo>

Another alternative might be to return a representation as JSON, like the example
shown in Listing 9-2.

CHAPTER 9 ■ WEB SERVICES296

10450_ch09.qxd 5/20/08 10:44 PM Page 296

http://localhost:8080/collab-todo/todo/1

Listing 9-2. JSON Representation of a Todo Object Returned from a RESTful Web Service

{

"id": 1,

"completedDate": new Date(1197389280000),

"status": "1",

"priority": "1",

"name": "Expose Web Service",

"owner": 1,

"class": "Todo",

"createDate": new Date(1197350100000),

"dueDate": new Date(1197389280000),

"note": "Expose Todo domain as a RESTful Web Service."

}

In both Listings 9-1 and 9-2, you see that the Todo representation includes all the
properties of the object, including the IDs of referenced domain models like owner.

Notice the REST URLs are similar to the standard Grails convention-over-configuration
URLs introduced in Chapter 4. The one difference is the lack of the action, or verb. RESTful
accessed via HTTP uses the standard HTTP methods of GET, POST, PUT, or DELETE to specify
the action. Table 9-1 provides a mapping of CRUD actions to SQL statements, HTTP meth-
ods, and Grails URL conventions.

Table 9-1. Relationship Between SQL Statements, HTTP Methods, and Grails Conventions

Action SQL Statements HTTP Method Grails Convention

Create INSERT PUT create

Read SELECT GET show

Update UPDATE POST update

Delete DELETE DELETE delete

Collection SELECT list

The relationships described in Table 9-1 are pretty self-explanatory and follow the
REST principles, except for the last action of the collection. Because REST is purely focused
on CRUD, it doesn’t really address things like searching or returning lists. So the collection
is borrowed from the Grails concept of the list action and can easily be implemented by
doing a REST read without an ID, similar to the following:

http://localhost/collab-todo/todo

CHAPTER 9 ■ WEB SERVICES 297

10450_ch09.qxd 5/20/08 10:44 PM Page 297

http://localhost/collab-todo/todo

The result of this URL would include a representation of all Todo objects as XML, as
shown in Listing 9-3.

Listing 9-3. XML Representation of a Collection of Todo Objects Returned from a RESTful
Web Service

<list>

<todo id="1">

<completedDate>2007-12-11 11:08:00.0</completedDate>

<createDate>2007-12-11 00:15:00.0</createDate>

<dueDate>2007-12-11 11:08:00.0</dueDate>

<name>Expose Web Service</name>

<note>Expose Todo domain as a RESTful Web Service.</note>

<owner id="1"/>

<priority>1</priority>

<status>1</status>

</todo>

<todo id="2">

<completedDate>2007-12-11 11:49:00.0</completedDate>

<createDate>2007-12-11 00:15:00.0</createDate>

<dueDate>2007-12-11 11:49:00.0</dueDate>

<name>Expose Collection of Todo objects</name>

<note>Add a mechanism to return more than just a single todo.</note>

<owner id="1"/>

<priority>1</priority>

<status>1</status>

</todo>

</list>

Notice that in Listing 9-3, two Todo objects are returned within a <list> element rep-
resenting the collection.

RESTful in Grails
Grails provides several features that make implementing a RESTful web service in Grails
easy. First, it provides the ability to map URLs. In the case of RESTful web services, you
want to map URLs and HTTP methods to specific controller actions. Second, Grails pro-
vides some utility methods to encode any Grails domain object as XML or JSON.

CHAPTER 9 ■ WEB SERVICES298

10450_ch09.qxd 5/20/08 10:44 PM Page 298

■Note The Grails Plugins5 page does contain a REST plug-in,6 but its functionality has been rolled into the
Grails framework as of Grails 1.0 and is no longer relevant.

In this section, you will discover how you can use the URL mappings, encoding, and
the Grails conventions to create a RestController, which returns XML or JSON represen-
tations for any Grails domain class, similar to how scaffolding is able to generate any web
interface.

URL Mapping

As you learned in the previous section, URLs are a major aspect of the RESTful web serv-
ice architectural style. So it should come as no surprise that URL mappings are involved.
But before we explain how to map RESTful web services, let’s look at the default URL
mappings.

Default URL Mappings

You can find the URL mappings’ configuration file, UrlMappings.groovy, with the other
configuration files in grails-app/conf/. It uses a simple domain-specific language to map
URLs. Listing 9-4 shows the default contents of the file.

Listing 9-4. Default UrlMappings.groovy

01 class UrlMappings {

02 static mappings = {

03 "/$controller/$action?/$id?"{

04 constraints {

05 // apply constraints here

06 }

07 }

08 }

09 }

In case you thought the Grails URL convention was magic, well, it isn’t. Line 3 of
Listing 9-4 reveals how the convention is mapped to a URL. The first path element,
$controller, as explained in Chapters 4 and 5, identifies which controller will handle

CHAPTER 9 ■ WEB SERVICES 299

5. http://grails.codehaus.org/Plugins

6. http://grails.codehaus.org/REST+plugin

10450_ch09.qxd 5/20/08 10:44 PM Page 299

http://grails.codehaus.org/Plugins
http://grails.codehaus.org/REST+plugin

the request. $action optionally (as noted by the ? operator, similar to the safe dereferenc-
ing operator in Groovy) identifies the action on the controller to perform the request.
Finally, $id optionally specifies the unique identifier of a domain object associated with
the controller to be acted upon. So, as a reminder, the following URL would be inter-
preted as invoking the show action on the TodoController class to display the Todo domain
class with an index of 1:

http://localhost:8080/collab-todo/todo/show/1

Listing 9-4 shows how this configuration file maps the default URLs. It is completely
customizable if you don’t like the default or if you want to create some additional map-
pings for things such as RESTful web services. Mappings are explained in the next section.

RESTful Mappings

The basic concept behind RESTful URL mappings is simple. Just map a URL and an HTTP
method to a controller and an action. However, because we want to expose our services as
both XML and JSON, we will add a slight twist and include the format type that we want as
the base path of our URL. This technique also simplifies making the generic RestController
in the next section, because using a common base URL can always be mapped to the
RestController. So the URL to invoke a RESTful web service that returns an XML represen-
tation like that found in Listing 9-1 would look like this:

http://localhost:8080/collab-todo/rest/todo/1

and the URL for returning a JSON representation like that found in Listing 9-2 would look
like this:

http://localhost:8080/collab-todo/json/todo/1

You can implement this mapping by adding an additional URL mapping to
UrlMappings.groovy. Listing 9-5 shows what the mapping looks like.

Listing 9-5. RESTful URL Mapping

01 "/$rest/$controller/$id?"{

02 controller = "rest"

03 action = [GET:"show", PUT:"create", POST:"update", DELETE:"delete"]

04 constraints {

05 rest(inList:["rest","json"])

06 }

07 }

CHAPTER 9 ■ WEB SERVICES300

10450_ch09.qxd 5/20/08 10:44 PM Page 300

http://localhost:8080/collab-todo/todo/show/1
http://localhost:8080/collab-todo/rest/todo/1
http://localhost:8080/collab-todo/json/todo/1

Line 1 of Listing 9-5 shows the format of the URL. It includes a required $rest, which
is the resulting format type, followed by the required $controller and an optional $id.
Because $rest should only allow the two format types we are expecting, line 5 uses an
inList constraint much like the constraints discussed in the GORM discussions of
Chapter 6. Anything other than a rest or a json will cause an HTTP 404 (Not Found) error.
Line 2 specifies that the RestController will handle any URL with this mapping. Finally,
line 3 maps the HTTP methods to Grails conventional actions on the RestController.

RestController

Because Grails already has conventions around CRUD as well as dynamic typing provided by
Groovy, implementing a generic RESTful controller that can return XML or JSON representa-
tions of any domain model is relatively simple. We’ll begin coverage of the RestController by
explaining the common implementation used by all actions. We’ll then explain each action
and its associated client, which calls the RESTful service.

Common Functionality

The common functionality of the RestController is implemented as an interceptor, as
discussed in Chapter 5, along with two helper methods. Listing 9-6 contains a complete
listing of the common functionality.

Listing 9-6. RestController

import static org.apache.commons.lang.StringUtils.*

import org.codehaus.groovy.runtime.InvokerHelper

import org.codehaus.groovy.grails.commons.GrailsDomainClass

import Error

/**

* Scaffolding like controller for exposing RESTful web services

* for any domain object in both XML and JSON formats.

*/

class RestController {

private GrailsDomainClass domainClass

private String domainClassName

// RESTful actions excluded

CHAPTER 9 ■ WEB SERVICES 301

10450_ch09.qxd 5/20/08 10:44 PM Page 301

def beforeInterceptor = {

domainClassName = capitalize(params.controller)

domainClass = grailsApplication.getArtefact("Domain", domainClassName)

}

private invoke(method, parameters) {

InvokerHelper.invokeStaticMethod(domainClass.getClazz(), method, parameters)

}

private format(obj) {

def restType = (params.rest == "rest")?"XML":"JSON"

render obj."encodeAs$restType"()

}

}

The beforeInterceptor found in Listing 9-6 is invoked before any of the action meth-
ods are called. It’s responsible for converting the $controller portion of the URL into
a domain class name and a reference to a GrailsDomainClass, which are stored into private
variables of the controller. You can use the domainClassName later for logging and error mes-
sages. The name is derived from using an interesting Groovy import technique. Since the
controller in the URL is lowercased, you must uppercase it before doing the lookup. To do
this, you use the static Apache Commons Lang StringUtils capitalize() method. Rather
than specifying the utility class when the static method is called, an import in Groovy can
also reference a class, making the syntax appear as if the static helper method is actually
a local method. A reference to the actual domain class is necessary so the RestController
can call dynamic GORM methods. Getting access to that domain class by name involves
looking it up. However, because Grails domain classes are not in the standard classloader,
you cannot use Class.forName(). Instead, controllers have an injected grailsApplication
with a getArtefact() method, which you can use to look up a Grails artifact based on type.
In this case, the type is domain. You can also use this technique to look up controllers, tag
libraries, and so on.

■Note The RestController class is framework-oriented, so it uses some more internal things such as
grailsApplication.getArtefact() and InvokerHelper to behave generically. If you get into writing
Grails plug-ins, you will use these type of techniques more often than in normal application development.

In Listing 9-6, the helper methods are the invoke() method and format() method.
The invoke() method uses the InvokeHelper helper class to simplify making calls to the
static methods on the domain class. The methods on the domain class that are invoked
by the RestController are all GORM-related. The format method uses the $rest portion of

CHAPTER 9 ■ WEB SERVICES302

10450_ch09.qxd 5/20/08 10:44 PM Page 302

the URL to determine which Grails encodeAsXXX() methods it will call on the domain class.
Grails includes encodeAsXML() and encodeAsJSON() methods on all domain objects.

There is one other class involved in the common functionality, and that is the Error
domain class found in Listing 9-7.

Listing 9-7. Error Domain Class

class Error {

String message

}

Yes, the Groovy Error class in Listing 9-7 is a domain class found in the grails-app/domain
directory. Making it a domain class causes Grails to attach the encoding methods, therefore
enabling XML or JSON to be returned if an error occurs during the invocation of a RESTful
web service.

RESTful show

The show action has double duty. It displays both a single domain model and a collection
of domain models. Listing 9-8 exhibits the show action implementation.

Listing 9-8. show Action

def show = {

def result

if(params.id) {

result = invoke("get", params.id)

} else {

if(!params.max) params.max = 10

result = invoke("list", params)

}

format(result)

}

In Listing 9-8, you should notice that the action uses params to determine if an ID was
passed in the URL. If it was, the GORM get() method is called for that single domain model.
If it wasn’t, the action calls the GORM list() method to return all of the domain objects. The
results will be something like those found in Listings 9-1, 9-2, and 9-3, depending on how it
was invoked. Also, notice that just like scaffolding, the action only returns a maximum of

CHAPTER 9 ■ WEB SERVICES 303

10450_ch09.qxd 5/20/08 10:44 PM Page 303

10 domain objects by default. Using URL parameters, you can override that, just like you
can with scaffolding. So adding ?max=20 to the end of the URL would return at maximum
20 domain classes, but it does break the spirit of REST.

Listing 9-9 contains example code of a client application that calls the show action
and returns a single domain model.

Listing 9-9. RESTful GET Client (GetRestClient.groovy)

import groovy.util.XmlSlurper

def slurper = new XmlSlurper()

def url = "http://localhost:8080/collab-todo/rest/todo/1"

def conn = new URL(url).openConnection()

conn.requestMethod = "GET"

conn.doOutput = true

if (conn.responseCode == conn.HTTP_OK) {

def response

conn.inputStream.withStream {

response = slurper.parse(it)

}

def id = response.@id

println "$id - $response.name"

}

conn.disconnect()

There are a couple of things to notice in Listing 9-9. First, the example uses the stan-
dard Java URL and URLConnection classes defined in the java.net package. This will be true
of all client applications through the rest of the chapter. You could also use other HTTP
client frameworks, such as Apache HttpClient.7 Second, notice the request method of GET
was used. Finally, the Groovy XmlSlurper class was used to parse the returned XML. This
allows you to use the XPath notation to access things such as the name element and the id
attribute of the result, like the XML result shown in Listing 9-1.

CHAPTER 9 ■ WEB SERVICES304

7. http://jakarta.apache.org/httpcomponents/httpclient-3.x/

10450_ch09.qxd 5/20/08 10:44 PM Page 304

http://localhost:8080/collab-todo/rest/todo/1
mailto:response.@id
http://jakarta.apache.org/httpcomponents/httpclient-3.x

RESTful delete

Because DELETE is so similar to GET, both the action code and the client code are very simi-
lar to that shown in the previous show action section. Listing 9-10 shows the delete action
implementation.

Listing 9-10. delete Action

def delete = {

def result = invoke("get", params.id);

if(result) {

result.delete()

} else {

result = new Error(message: "${domainClassName} not found with id ${params.id}")

}

format(result)

}

In Listing 9-10, the GORM get() method is called on the domain class. If it is found, it
will be deleted. If it isn’t, it will return an error message. Listing 9-11 shows the client code
that would call the delete RESTful web service.

Listing 9-11. RESTful DELETE Client (DeleteRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo/1"

def conn = new URL(url).openConnection()

conn.requestMethod = "DELETE"

conn.doOutput = true

if (conn.responseCode == conn.HTTP_OK) {

input = conn.inputStream

input.eachLine {

println it

}

}

conn.disconnect()

The only difference between Listing 9-11 and Listing 9-9 is that the request method
used in Listing 9-11 is DELETE, and instead of using the XmlSlurper, the contents of the result

CHAPTER 9 ■ WEB SERVICES 305

10450_ch09.qxd 5/20/08 10:44 PM Page 305

http://localhost:8080/collab-todo/rest/todo/1

are just printed to the console, which will either be an XML or JSON result of the deleted
domain object that looks like either Listing 9-1 or 9-2, respectively, or an error message.

RESTful update

A POST is used to update the existing domain models in the RESTful paradigm. Listing 9-12
shows the implementation of the method that updates the domain models.

Listing 9-12. update Action

def update = {

def result

def domain = invoke("get", params.id)

if(domain) {

domain.properties = params

if(!domain.hasErrors() && domain.save()) {

result = domain

} else {

result = new Error(message: "${domainClassName} could not be saved")

}

} else {

result = new Error(message: "${domainClassName} not found with id ${params.id}")

}

format(result)

}

Like previous examples, Listing 9-12 invokes the GORM get() method to return the
domain model to update. If a domain model is returned, all the parameters passed from
the client are copied to the domain. Assuming there are no errors, the domain model is
saved. Listing 9-13 shows a client that would call the POST.

Listing 9-13. RESTful POST Client (PostRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo"

def conn = new URL(url).openConnection()

conn.requestMethod = "POST"

conn.doOutput = true

conn.doInput = true

CHAPTER 9 ■ WEB SERVICES306

10450_ch09.qxd 5/20/08 10:44 PM Page 306

http://localhost:8080/collab-todo/rest/todo

def data = "id=1¬e=" + new Date()

conn.outputStream.withWriter { out ->

out.write(data)

out.flush()

}

if (conn.responseCode == conn.HTTP_OK) {

input = conn.inputStream

input.eachLine {

println it

}

}

conn.disconnect()

Notice that Listing 9-13 uses a POST method this time. Also, pay attention to the fact
the data is passed to the service as name/value pairs separated by &s. At a minimum, you
must use the id parameter so the service knows what domain model to operate on. You
can also append other names to reflect changes to the domain. Because this is a POST, the
container automatically parses the name/value pairs and puts them into params. The results
will either be an XML or a JSON representation of the updated domain object that looks
like Listing 9-1 or 9-2, respectively, or an error message.

RESTful create

Finally, the most complicated of the RESTful services: the create service. Listing 9-14
shows the implementation.

Listing 9-14. create Action

def create = {

def result

def domain = InvokerHelper.invokeConstructorOf(domainClass.getClazz(), null)

def input = ""

request.inputStream.eachLine {

input += it

}

CHAPTER 9 ■ WEB SERVICES 307

10450_ch09.qxd 5/20/08 10:44 PM Page 307

// convert input to name/value pairs

if(input && input != '') {

input.tokenize('&').each {

def nvp = it.tokenize('=');

params.put(nvp[0],nvp[1]);

}

}

domain.properties = params

if(!domain.hasErrors() && domain.save()) {

result = domain

} else {

result = new Error(message: "${domainClassName} could not be created")

}

format(result)

}

Listing 9-14 begins by using InvokerHelper to call a constructor on the domain class.
Unlike POST, PUT’s input stream of name/value pairs is not automatically added to the
params. You must do this programmatically. In this case, two tokenizers are used to parse
the input stream. After that, the rest of the implementation follows the update example
found in Listing 9-12. Listing 9-15 demonstrates a client application that does a PUT.

Listing 9-15. RESTful PUT Client (PutRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo"

def conn = new URL(url).openConnection()

conn.requestMethod = "PUT"

conn.doOutput = true

conn.doInput = true

def data = "name=fred¬e=cool&owner.id=1&priority=1&status=1&"+

"createDate=struct&createDate_hour=00&createDate_month=12&" +

"createDate_minute=15&createDate_year=2007&createDate_day=11"

conn.outputStream.withWriter { out ->

out.write(data)

out.flush()

}

CHAPTER 9 ■ WEB SERVICES308

10450_ch09.qxd 5/20/08 10:44 PM Page 308

http://localhost:8080/collab-todo/rest/todo

if (conn.responseCode == conn.HTTP_OK) {

input = conn.inputStream

input.eachLine {

println it

}

}

conn.disconnect()

Listing 9-15 is nearly identical to Listing 9-13, except that the PUT request method
and a more complicated set of data are passed to the service. In this example, the data
includes the created date being passed. Notice that each element of the date/time must
be passed as a separate parameter. In addition, the createDate parameter itself must have
a value of struct. The results will either be an XML or JSON representation of the created
domain object that looks like Listing 9-1 or 9-2, respectively, or an error message.

Summary
In this chapter, you learned about the architectural style of RESTful web services as well
has how to expose domain models as RESTful web services. As you build your applica-
tions, look for opportunities to expose functionality to your customers in this way. You
may be amazed at the innovations you never even imagined. In Chapter 13, you will see
one such innovation of a Groovy desktop application that consumes the web services
developed in this chapter.

CHAPTER 9 ■ WEB SERVICES 309

10450_ch09.qxd 5/20/08 10:44 PM Page 309

10450_ch09.qxd 5/20/08 10:44 PM Page 310

Reporting

In most projects, reporting is something that is overlooked until the last minute. Every-
one is focused on getting information into the system and making the views look and feel
right. Then someone starts using the application and says, “Wouldn’t it be good if users
could print out a copy of the information to take with them and refer to throughout their
day?” “Oops, we didn’t think about that.” (Insert chirping crickets here.)

It makes sense that users would want to take their to-do information with them. But
you’re in a hurry and want to get this application rolled out quickly. What do you do?

In this chapter, you will learn how to create a reporting facility using the Collab-Todo
domain and a popular open source reporting engine, JasperReports.1 Creating a reporting
facility will give you a slightly different view of Grails. You will use dynamic invocation to
retrieve data for the report and pass the data to JasperReports. Along the way, you will see
how easy it is to use third-party libraries in a Grails application.

The Report
The goal of this chapter is to allow users to run a report that contains their list of to-do
items. Figure 10-1 shows an example of the report you will create and integrate into the
Collab-Todo application.

311

C H A P T E R 1 0

1. http://www.jasperforge.org

10450_ch10.qxd 5/17/08 4:55 PM Page 311

http://www.jasperforge.org

Figure 10-1. PDF of the to-do report

This simple PDF report displays a user’s to-do items.

Overview of the Reporting Function
Now that you know what the desired result is, how do you get there? Start by adding some
technical constraints to help frame the solution:

• You want to be able to create multiple reports.

• You want the report to be available in multiple formats, including PDF, HTML, TXT,
RTF, XLS, CSV, and XML.

• You believe in the DRY (principle and want to maintain a separation of concerns
and encapsulation.

• You want to leverage the Grails domain model and dynamic methods to retrieve
the report data.

Taking these technical constraints into consideration, you can construct the solution
illustrated in Figure 10-2.

CHAPTER 10 ■ REPORTING312

10450_ch10.qxd 5/17/08 4:55 PM Page 312

Figure 10-2. Reporting facility overview

The first component in the top-left part of Figure 10-2 represents an HTML page. The
HTML page needs to provide a way for users to indicate that they want to generate a report.
You accomplish this by creating a report tag. You could just hard-code all the logic required
to invoke the next step in the process, but knowing that you will have multiple reports, that
would be a lot of copying, pasting, and tweaking. It wouldn’t be very user friendly to the
HTML developer either. By creating a tag, you’re able to encapsulate all of the invocation
knowledge.

Just like most links in Grails, a tag invokes an action on a controller. If you consider the
technical constraints, the controller should have very little knowledge about the actual report
to be created. It should control (pun intended) the execution of the reporting process. In this
case, it calls the TodoController to gather the data for the report.

The TodoController uses dynamic finder methods on the Todo class to retrieve the
report data from the database and returns the result to the ReportController. Now that
the ReportController has data for the report, it calls the ReportService to create the report.

The ReportService prepares the data, locates the appropriate report template, and
invokes the report engine, JasperReports. The report engine merges the data and the
template to create the report. It returns the report to the ReportService, which in turn
returns the report to the ReportController. The ReportController then wraps the report
in the appropriate headers and returns it to the browser to be displayed.

7

8

5

2

310

1

4

96

<g:report controller= "TodoController"
 action= "report1"

PDF

PDF

DB

ReportController

ReportService

TodoController

userTodo.jasper

JasperReports

CHAPTER 10 ■ REPORTING 313

10450_ch10.qxd 5/17/08 4:55 PM Page 313

This is just an overview. Lots of questions are probably going through your head right
now. The rest of the chapter will explore each step in more detail and will hopefully answer
most, if not all, of your questions.

DYNAMIC FINDERS OR EMBEDDED SQL?

A question that needs to be addressed straightaway is, “Why does the ReportController pass the
report data to the report instead of the report looking up the data using a simple SQL statement
embedded in the report template?” The answer is pretty simple. That would be a perfectly legitimate
approach in many situations (see the “An Alternate Approach” section at the end of the chapter), but
using the dynamic finder and the domain model provides a couple of advantages.

First, when the domain model becomes more complicated, writing the SQL to navigate all of the
tables and relationships is error prone and difficult. You already defined all of this information in the
domain model using GORM, so why not just reuse it?

Second, your goal is to learn Grails, and using embedded SQL would cause you to miss out on
using dynamic finders and dynamically calling the appropriate action on the TodoController to
gather the data.

Now that you have an idea of how to approach creating the reporting facility, you
need to add JasperReports to the application and create the report template. The next
couple of sections will take you through that process. With that accomplished, you will
construct the individual components and tie everything together. By the end of this
chapter, you will have a pretty nice reporting facility that will allow you to easily create
reports in multiple output formats.

Reporting Tools
In this section, you will receive a high-level overview of JasperReports (the runtime
reporting engine) and iReports (the report designer). You will install iReports and add
the appropriate JasperReports libraries to the application.

Overview

JasperReports is a popular open source Java reporting engine from JasperSoft.2 You can
use JasperReports to define robust, professional reports that include graphics and charts.
You set up and define JasperReports reports using XML. The reporting engine uses the

CHAPTER 10 ■ REPORTING314

2. http://www.jaspersoft.com

10450_ch10.qxd 5/17/08 4:55 PM Page 314

http://www.jaspersoft.com

report definition and a data source to produce a report in a variety of output formats,
including PDF, XML, HTML, CSV, XLS, RTF, and TXT.

JasperReports uses third-party libraries to render reports. The engine itself is not an
executable application. It is intended to be embedded into a client or server-side appli-
cation. The application is responsible for passing the XML report definition, data source,
parameters, and configuration information to a report exporter. The exporter returns
a ByteArrayOutputStream containing the report content to the application. In the case of
a typical server application, the application sets the appropriate content type on an HTML
response and streams the results to the browser.

■Tip JasperReports relies on Abstract Window Toolkit (AWT) to render the report. If you intend to run
Collab-Todo in a Linux/Unix environment without graphics support, you will need to specify the headless
environment by setting –Djava.awt.headless=true. You can do this by setting the JAVA_OPT environ-
mental variable (e.g., JAVA_OPT='–Djava.awt.headless=true').

The XML report definition, known as a report template in Jasper terms, defines the
content and layout of the report. You can define the report by hand using an XML editor,
but this would be time consuming and error prone. Luckily, JasperSoft created iReports,
a graphic report designer for JasperReports that defines and compiles JasperReports. It is
much easier to build reports using iReports than it is to build the XML report definition
by hand.

■Note A full exploration of JasperReports and iReports is beyond the scope of this book. In addition to the
JasperSoft web site, the Apress books The Definitive Guide to JapserReports3 and The Definitive Guide to
iReports 4 are good sources of information.

Installing JasperReports and iReports

Installing JasperReports and iReports is easy. You can download iReports from the iReports
home page5 or from SourceForge.6 Download and execute the Windows installer version.

CHAPTER 10 ■ REPORTING 315

3. Teodor Danciu and Lucian Chirita, The Definitive Guide to JasperReports (Berkeley, CA: Apress, 2007).

4. Giulio Toffoli, The Definitive Guide to iReports (Berkeley, CA: Apress, 2007).

5. http://jasperforge.org/sf/projects/ireport

6. http://sourceforge.net/projects/ireport

10450_ch10.qxd 5/17/08 4:55 PM Page 315

http://jasperforge.org/sf/projects/ireport
http://sourceforge.net/projects/ireport

■Note If you’re using an operating system other than Windows, you will need to download the .zip or
.tar file and install it manually by unzipping or unpacking it into an appropriate location.

The Windows installer installs iReports in the directory of your choice; remember
where it’s installed. iReports includes JasperReports and all of the required third-party
libraries. Copy the following files from the iReports/lib directory to the collab-todo/lib
directory:

• poi-x.x.x-FINAL-x.jar

• commons-beanutils-x.x.jar

• commons-collections-x.x.jar

• commons-dbcp-x.x.x.jar

• commons-digester-x.x.jar

• commons-logging-x.x.x.jar

• commons-logging-api-x.x.x.jar

• commons-pool-x.x.jar

• itext-x.x.x.jar

• jasperreports-x.x.x.jar

Grails uses these JAR files to invoke JasperReports.

Creating the To-Do Report
Now that iReports is installed, you’re ready to build the to-do report, as shown in Figure 10-1.
You will take the following steps to create the report:

1. Define a JavaBeans data source for Collab-Todo.

2. Create the first iteration of the report using the iReport Wizard.

3. Enhance the report.

4. Compile the report.

CHAPTER 10 ■ REPORTING316

10450_ch10.qxd 5/17/08 4:55 PM Page 316

Defining the Data Source

If you recall from the overview, the ReportController gathers the report data from another
controller and ultimately passes the data to the reporting engine. This means that instead
of using a JDBC database connection, the report uses a JavaBeans data source. Let’s define
the data source:

1. From iReports, select the Data ➤ Connections/Data Sources menu option. You will
be presented with a list of currently defined and example data sources.

2. Click the New button to define a new data source. You will be presented with a
“Connections properties” dialog box.

3. Select the “JavaBeans set data source” option from the list of available data sources,
and click the Next button. You will be presented with the “JavaBeans set data source”
options.

4. Set the name to Collab-Todo and blank out the factory class and static method fields.
Figure 10-3 shows the contents of this page.

Figure 10-3. The “JavaBeans set data source” page

5. Click the Save button. You should see your new data source in the list of available
data sources.

6. Close this window.

You’re now ready to define the report using the wizard.

CHAPTER 10 ■ REPORTING 317

10450_ch10.qxd 5/17/08 4:55 PM Page 317

Using iReports

Now that you’ve defined a data source, you’re ready to start building the report. If you’re
already familiar with iReports, you can skim through this section and move on to “The
Report Tag” section.

MAKING IREPORTS AWARE OF THE COLLAB-TODO CLASSES

iReports uses the Collab-Todo domain class to create the report, so you need to make iReports aware
of the domain classes. Ideally, you would just add the location of the Collab-Todo classes to the iReports
classpath. At the time of writing, however, a bug in iReports prevents this from working as desired. You
have to decide if you’d like to manually describe the JavaBean fields within iReports, or if you’d like to
create a JAR file of the classes and put it in the iReports lib directory.

For our purposes, it’s easier and less error-prone to create a JAR file of the Collab-Todo classes.
By default, the Collab-Todo classes should be located in USER_HOME/.grails/1.0.2/projects/
collab-todo/classes. You can use your favorite JAR/ZIP tool to create a JAR of the classes and place
it in the iReports lib directory. This will make iReports aware of the Collab-Todo domain classes.

If you’re familiar with iReports, you can go ahead and create the report however you
see fit. However, we’re assuming that you’re new to iReports, so follow these steps to use
the iReports Wizard.

1. Select the File ➤ Report Wizard menu option.

2. Specify the data that you want in the report. For your purposes, you want to set the
Connections/Data Sources field to Collab-Todo, if it isn’t already. This tells iReports
that you’re using a JavaBeans data source.

3. Tell iReports the domain class that contains the data. You’re creating a to-do report,
so the “JavaBean class” field should be set to Todo. The wizard should look something
like Figure 10-4.

CHAPTER 10 ■ REPORTING318

10450_ch10.qxd 5/17/08 4:55 PM Page 318

Figure 10-4. Specifying the data source

4. Assuming that you followed the instructions in the “Making iReports Aware of the
Collab-Todo Classes” sidebar, when you click the Next button, you will be given
the opportunity to select the fields that should be included in the report. The wiz-
ard should look something like Figure 10-5.

Figure 10-5. Selecting fields

Add all of the fields except for the class and metaClass, and click the Next button.
The metaClass is internal Grails metadata and wouldn’t be appropriate for a report.
The next screen lists the fields and their datatypes. Click the Next button to continue.

CHAPTER 10 ■ REPORTING 319

10450_ch10.qxd 5/17/08 4:55 PM Page 319

5. You should now be on step 3, “Group by.” You don’t have any work to do here, so
click the Next button to move to step 4, Layout.

6. The wizard lets you pick from some predefined layouts. As a starting point, check
“Columnar layout” and highlight classicC.xml. Your screen should look something
like Figure 10-6.

Figure 10-6. Selecting the layout

7. Click the Next button to move to step 5, Finish. Click the Finish button to generate
the report template. You should have a report template that looks like Figure 10-7.

CHAPTER 10 ■ REPORTING320

10450_ch10.qxd 5/17/08 4:55 PM Page 320

Figure 10-7. The to-do report template

Congratulations; you have your first report. It isn’t pretty, but it is functional. At this
point, you could compile the report and run it. If that’s what you would like to do, skip
forward to “Compiling the Report.” Next, you will make the report a little more usable.

As you can see, iReports used the attribute names to create the labels. As a first step
toward making the report a little more usable, type in your own text for the labels. You may
have to resize the field by dragging the right side of the label.

Enhancing the Report

As you can see, iReports used the Todo property names to create the labels. You should
rearrange the labels and fields to an order that makes more sense. You may want to copy
the example shown in Figure 10-8.

CHAPTER 10 ■ REPORTING 321

10450_ch10.qxd 5/17/08 4:55 PM Page 321

Figure 10-8. Rearranged labels and fields

The report is starting to look better, but you could do more. Follow these steps to
enhance the report:

1. Take a good look at the Note field. It’s a little small, so expand it by dragging the
bottom edge of the field down.

2. The title could use a little work, so add the username, which is passed to the report
as a parameter. To define the username, right-click the parameter entry in the Doc-
ument Structure window and select Add ➤ Parameter. iReports displays a pop-up
window that lets you input the parameter name. Set the Parameter Name field to
userName, as shown in Figure 10-9.

Figure 10-9. Setting up the parameter

CHAPTER 10 ■ REPORTING322

10450_ch10.qxd 5/17/08 4:55 PM Page 322

3. Now that you have defined the parameter, you can use it in the report header.
Insert the userName parameter into the header by dragging it from the list of
parameters in the Document Structure window to the report header. Also, change
the current text to read “Todo for:.” Figure 10-10 shows an example of the new
header.

Figure 10-10. The new header

4. Save the report as userTodo.jrxml in the Collab-Todo application directory.

You’re now ready to compile the report and start integrating it into the application.

Compiling the Report

Now that you’ve set up the report, it’s time to make it available to the application. You
need to compile it and copy the compiled file to the appropriate application directory.

Select Build ➤ Compile in iReports. You will see the results of the compilation at the
bottom of iReports in the output console. Hopefully, the build is successful the first time,
but if it isn’t, work through the error messages and try again. Once you have a successful
build, copy the userTodo.jasper file from the iReports home directory to the collab-todo/
web-app/reports directory.

The Report Tag
You have used several tags, but now it’s time to create your own. If you have developed tags
before, you will be pleasantly surprised by how easy it is in Grails. You will create a report
tag library to hold the report tag and then implement the tag as a closure.

Tag Library Overview

It is a best practice to group tags by topic into a tag library. In this case, all report tags
are grouped together in the grails-app/taglib/ReportTagLib.groovy. Notice the Grails
conventions again: tag libraries end with TagLib.groovy and are located in the grails-app/
taglib directory. The following command illustrates creating the tag library:

CHAPTER 10 ■ REPORTING 323

10450_ch10.qxd 5/17/08 4:55 PM Page 323

> grails create-tag-lib Report

The results of the command can be seen here:

Welcome to Grails 1.0-2 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: C:\Apps\grails\grails-1.0-2

Base Directory: C:\workspace \collab-todo

Environment set to development

Running script C:\Apps\grails\grails-1.0-RC1\scripts\CreateTagLib.groovy

[copy] Copying 1 file to C:\workspace\collab-todo\grails-app\taglib

Created TagLib for Report

[copy] Copying 1 file to C:\workspace\collab-todo\test\integration

Created TagLibTests for Report

As you have come to expect, Grails created the tag library and an integration test. The
next step is to create the tag.

Creating the Tag

As you saw in Chapter 8, a tag is a closure that has two arguments: a map of tag attributes
and the body of the tag. Listing 10-1 illustrates the tag library class.

Listing 10-1. Tag Library Class

class ReportTagLib {

def report = { attrs, body ->

. . .

}

}

Now you have to figure out what to put between the curly braces. You know you have
to let the users choose in which format they want to receive the report, and you know
that you have to invoke the ReportController to generate the report. With this in mind,
you can start designing the tag inputs. Let’s take a look at it from a usage point of view.
Listing 10-2 illustrates how that tag might look inside a view.

CHAPTER 10 ■ REPORTING324

10450_ch10.qxd 5/17/08 4:55 PM Page 324

http://grails.org

Listing 10-2. Report Tag

<g:report id="todoReport" controller="TodoController"

action="userTodo" report="userTodo"

format="PDF,HTML,CSV,XLS,RTF,TXT,XML">

<input type="hidden" name="userName" value="${todoList[0]?.owner}" />

</g:report>

Based upon the requirements, this should make some sense. The report tag has an id
attribute to uniquely identify it. The controller and action attributes work together to spec-
ify which action to run to get the report data. The report attribute specifies which report to
generate, and the format attribute supplies a list of report formats for users to select. The
hidden input determines which user’s information to gather. With this information, you
can turn your attention back to the tag implementation. The tag body gives you a pretty
good hint about the implementation. The tag generates a <form> element that invokes the
ReportController’s index action. The format attribute is used to display icons representing
each of the report formats. Listing 10-3 contains the implementation of the report tag.

Listing 10-3. Report Tag Implementation

01 def report = { attrs, body ->

02

03 validateAttributes(attrs)

04 def appPath = grailsAttributes.getApplicationUri(request)

05

06 out << """

07 <form id=\"${attrs['id']}\" name=\"${attrs['report']}\"

08 action=\"${appPath}/report\">

09 <input type=\"hidden\" name=\"format\"/>

10 <input type=\"hidden\" name=\"file\" value=\"${attrs['report']}\"/>

11 <input type=\"hidden\" name=\"_controller\"

12 value=\"${attrs['controller']}\"/>

13 <input type=\"hidden\" name=\"_action\" value=\"${attrs['action']}\"/>

14 """

15 TreeSet formats = attrs['format'].split(",")

16 formats.each{

17 out << """

18 <a href=\"#${attrs['report']}Report\"

19 onClick=\"document.getElementById('${attrs['id']}').

20 format.value = '${it}';

21 document.getElementById('${attrs['id']}').submit()\">

22 <img width=\"16px\" height=\"16px\" border=\"0\"

23 src=\"${appPath}/images/icons/${it}.gif\" />

24

CHAPTER 10 ■ REPORTING 325

10450_ch10.qxd 5/17/08 4:55 PM Page 325

25 """

26 }

27 out << body()

28 out << "</form>"

29 }

30

31 private void validateAttributes(attrs) {

32 //Verify the 'id' attribute

33 if(attrs.id == null)

34 throw new Exception("The 'id' attribute in 'report' tag mustn't be 'null'")

35

36 //Verify the 'format' attribute

37 def availableFormats = ["CSV","HTML","RTF","XLS","PDF","TXT","XML"]

38 attrs.format.toUpperCase().split(",").each{

39 if(!availableFormats.contains(it)){

40 throw new Exception("""Value ${it} is a invalid format attribute.

41 Only ${availableFormats} are permitted""")

42 }

43 }

44 }

Let’s take a look at the tag implementation line by line. In line 1, the tag takes two
arguments: an attribute map and the body. Because you specified the report formats on
the tag, the tag in line 3 has to validate that you specified supported report formats. Line
4 creates a local variable for the application path. Lines 6–14 create the form and hidden
input fields to allow tag attributes to be passed to the ReportController. But wait, where
was out defined? The out variable is a handle to the output stream that is injected by Grails.

Lines 15–25 iterate over the tag format attribute to create icons for each of the report
formats. If you look closely, you will see that when the user selects the report format, the
hidden input field format is set and the form is submitted. Line 27 outputs the tag body, and
line 28 completes the form definition. Lines 31–44 are the body of the validateAttributes
method called on line 3. This method iterates through the tag format attribute to validate
that you specified valid report formats.

The ReportController and the ReportService
As you saw in Figure 10-1, the ReportController follows these three steps to create the report:

1. Gather data for the report by invoking a controller/action.

2. Locate a compiled report

3. Ask the ReportService to generate the report, and wrap the output with the appro-
priate content type.

CHAPTER 10 ■ REPORTING326

10450_ch10.qxd 5/17/08 4:55 PM Page 326

Start by running the following code to create the ReportController:

> grails create-controller Report

Now you need to implement the three steps listed previously. Listing 10-4 illustrates
gathering the report data.

Listing 10-4. Gathering the Report Data

import org.springframework.context.ApplicationContext;

import org.codehaus.groovy.grails.web.servlet.GrailsApplicationAttributes

class ReportController {

ReportService reportService

def index = {

// Gather data for the report.

// 1) Find the controller

ApplicationContext ctx = (ApplicationContext) session.

getServletContext().

getAttribute(GrailsApplicationAttributes.APPLICATION_CONTEXT);

def controller = ctx.getBean("${params._controller}");

// 2) Invoke the action

def inputCollection = controller."${params._action}"(params)

params.inputCollection = inputCollection

The first step in gathering data for the report is to dynamically invoke the action
supplied by the report tag. The tag specifies the controller and the action to be invoked
to gather the data. The controller and the action to invoke are passed in the params map.
The problem is that the values are just strings. You use the Spring application context to
get an instance of the controller. Then you invoke the action on the controller, passing
the params map to it.

Next, you need to locate the report. The compiled reports are located in the web-app/
reports directory. Listing 10-5 illustrates using the servletContext to locate and load the
report.

Listing 10-5. Locating and Loading the Report

// Find the compiled report

def reportFileName = reportService.reportFileName("${params.file}")

def reportFile = servletContext.getResource(reportFileName)

CHAPTER 10 ■ REPORTING 327

10450_ch10.qxd 5/17/08 4:55 PM Page 327

if(reportFile == null){

throw new FileNotFoundException("""\"${reportFileName}\" file must be in

reports repository.""")

}

Finally, you need to generate the report and wrap the output with the proper content
type. The ReportController calls the ReportService to generate the report. You could col-
lapse the service into the controller, but the controller’s purpose is to control, not do the
actual work. The controller should delegate the actual work to some other component.
Delegating the actual report generation to the report service maintains a separation of
concerns and encapsulates knowledge of the JasperReports libraries into a single location,
the ReportService. Listing 10-6 illustrates delegating to the ReportService and wrapping the
output in the appropriate context type.

Listing 10-6. Calling the ReportService

// Call the ReportService to invoke the reporting engine

switch(params.format){

case "PDF":

createPdfFile(reportService.generateReport(reportFile,

reportService.PDF_FORMAT,params).toByteArray(),params.file)

break

case "HTML":

render(text:reportService.generateReport(reportFile,

reportService.HTML_FORMAT,params),contentType:"text/html")

break

case "CSV":

render(text:reportService.generateReport(reportFile,

reportService.CSV_FORMAT,params),contentType:"text")

break

case "XLS":

createXlsFile(reportService.generateReport(reportFile,

reportService.XLS_FORMAT,params).toByteArray(),params.file)

break

case "RTF":

createRtfFile(reportService.generateReport(reportFile,

reportService.RTF_FORMAT,params).toByteArray(),params.file)

break

case "XML":

render(text:reportService.generateReport(reportFile,

reportService.XML_FORMAT,params),contentType:"text")

break

CHAPTER 10 ■ REPORTING328

10450_ch10.qxd 5/17/08 4:55 PM Page 328

case "TXT":

render(text:reportService.generateReport(reportFile,

reportService.TEXT_FORMAT,params),contentType:"text")

break

default:

throw new Exception("Invalid format")

break

}

}

/**

* Output a PDF response

*/

def createPdfFile = { contentBinary, fileName ->

response.setHeader("Content-disposition", "attachment; filename=" +

fileName + ".pdf");

response.contentType = "application/pdf"

response.outputStream << contentBinary

}

/**

* Output an Excel response

*/

def createXlsFile = { contentBinary, fileName ->

response.setHeader("Content-disposition", "attachment; filename=" +

fileName + ".xls");

response.contentType = "application/vnd.ms-excel"

response.outputStream << contentBinary

}

/**

* Output an RTF response

*/

def createRtfFile = { contentBinary, fileName ->

response.setHeader("Content-disposition", "attachment; filename=" +

fileName + ".rtf");

response.contentType = "application/rtf"

response.outputStream << contentBinary

}

Now that you have the controller, you need to set up the ReportService. You can cre-
ate the ReportService by running this command:

CHAPTER 10 ■ REPORTING 329

10450_ch10.qxd 5/17/08 4:55 PM Page 329

> grails create-service Report

The main functionality in the ReportService is encapsulation of the logic to generate
the report using the JasperReports API. Listing 10-7 contains the ReportService.

Listing 10-7. ReportService

01 import java.io.ByteArrayOutputStream

02 import java.io.InputStream

03 import java.sql.Connection

04 import java.sql.Timestamp

05 import java.util.HashMap

06

07 import net.sf.jasperreports.engine.JRException

08 import net.sf.jasperreports.engine.JRExporter

09 import net.sf.jasperreports.engine.JasperPrint

10 import net.sf.jasperreports.engine.JasperFillManager

11 import net.sf.jasperreports.engine.JRExporterParameter

12 import net.sf.jasperreports.engine.export.JRCsvExporter

13 import net.sf.jasperreports.engine.export.JRHtmlExporter

14 import net.sf.jasperreports.engine.export.JRHtmlExporterParameter

15 import net.sf.jasperreports.engine.export.JRPdfExporter

16 import net.sf.jasperreports.engine.export.JRXlsExporter

17 import net.sf.jasperreports.engine.export.JRXmlExporter

18 import net.sf.jasperreports.engine.export.JRRtfExporter

19 import net.sf.jasperreports.engine.export.JRTextExporter

20 import net.sf.jasperreports.engine.export.JRTextExporterParameter

21 import net.sf.jasperreports.engine.data.JRBeanCollectionDataSource

22

23 class ReportService {

24

25 boolean transactional = true

26

27 int PDF_FORMAT = 1;

28 int HTML_FORMAT = 2;

29 int TEXT_FORMAT = 3;

30 int CSV_FORMAT = 4;

31 int XLS_FORMAT = 5;

32 int RTF_FORMAT = 6;

33 int XML_FORMAT = 7;

34

35

CHAPTER 10 ■ REPORTING330

10450_ch10.qxd 5/17/08 4:55 PM Page 330

36

37 /**

38 * Generate the Report

39 */

40 def generateReport = {jasperFile, format, parameters ->

41

42 // Setup the Data Source

43 JRBeanCollectionDataSource ds = new JRBeanCollectionDataSource(

44 parameters.inputCollection);

45

46 InputStream input = jasperFile.openStream()

47 JRExporter exporter

48 ByteArrayOutputStream byteArray = new ByteArrayOutputStream()

49 JasperPrint jasperPrint = JasperFillManager.fillReport(input, parameters,ds)

50 switch (format) {

51 case PDF_FORMAT:

52 exporter = new JRPdfExporter()

53 break

54 case HTML_FORMAT:

55 exporter = new JRHtmlExporter()

56 exporter.setParameter(JRHtmlExporterParameter.

57 IS_USING_IMAGES_TO_ALIGN, false)

58 break

59 case CSV_FORMAT:

60 exporter = new JRCsvExporter()

61 break

62 case TEXT_FORMAT:

63 exporter = new JRTextExporter()

64 exporter.setParameter(JRTextExporterParameter.CHARACTER_WIDTH,

65 new Integer(10));

66 exporter.setParameter(JRTextExporterParameter.CHARACTER_HEIGHT,

67 new Integer(10));

68 break

69 case XLS_FORMAT:

70 exporter = new JRXlsExporter()

71 break

72 case RTF_FORMAT:

73 exporter = new JRRtfExporter()

74 break

75 case XML_FORMAT:

76 exporter = new JRXmlExporter()

77 break

CHAPTER 10 ■ REPORTING 331

10450_ch10.qxd 5/17/08 4:55 PM Page 331

78 default:

79 throw new Exception("Unknown report format")

80 }

81 exporter.setParameter(JRExporterParameter.OUTPUT_STREAM, byteArray)

82 exporter.setParameter(JRExporterParameter.JASPER_PRINT, jasperPrint)

83 exporter.exportReport()

84 return byteArray

85 }

86

87 def reportFileName = { reportName ->

88 return "/reports/"+reportName+".jasper"

89 }

90 }

Let’s walk through this. Line 40 is the beginning of the generateReport closure. As you
can see, generateReport takes three input parameters: the report template, the report for-
mat, and parameters. Lines 42–44 define and populate a JavaBeans collection data source.
If you look closely, you will see that the data source is populated from an input collection
contained with the parameters. This is the collection that the ReportController created.

Lines 46–48 do some additional setup. Line 49 passes the report template, parameters,
and JavaBeans data source to the reporting engine. Lines 50–80 set up the appropriate
rendering component based upon the report format type requested, while lines 81–82 set
some additional parameters on the renderer. Line 83 is where the real magic happens: it
causes the report to be generated. The results are returned to the caller on line 84.

In Listing 10-5, you may recall seeing something like the following:

reportService.reportFileName($params.file)

Lines 87–89 contain the implementation of this method, which, as you can tell, is
pretty basic. You simply prepend the directory and append the file extension to create the
report file name. You could easily have done this in the ReportController, but you really
don’t want the ReportController to know that you’re using JasperReports. By doing it this
way, you maintain a separation of concerns and encapsulation.

You’re now ready to tie it all together and see the result of your work.

Tying It All Together
You’re about to see the result of your work. You installed iReports and copied the appro-
priate libraries to the application. You created the report and the report tag library. You
created the ReportService and the ReportController. The only thing left to do is to write
the code that gathers the report data and hook the report tag into the application.

CHAPTER 10 ■ REPORTING332

10450_ch10.qxd 5/17/08 4:55 PM Page 332

Gathering the Report Data

Recall from “The Report Tag” section that the tag allows you to specify the controller and
the action to call to gather the report data. In this case, you’ll specify the TodoController
and the userTodo action, so you’ll need to create a userTodo action on the TodoController.
Listing 10-8 contains the content of the action.

Listing 10-8. Gathering the Report Data

def userTodo = {

def user = User.get(session.user.id)

return Todo.findAllByOwner(user)

}

The code in Listing 10-8 finds all the to-dos for the current user and returns the results.
Now, you have to hook the report tag into the application.

Adding the Report Tag to the Application

The last step is to add the report tag to the Todo List view and then edit the Todo List view
(grails-app/views/todo/list.gsp). At the bottom of the file, after the paginate logic, add the
report tag. Follow Listing 10-9 as an example.

Listing 10-9. Adding the Report Tag

. . .

<div class="paginateButtons">

<g:paginate total="${Todo.count()}" />

</div>

<g:report id="todoReport" controller="TodoController"

action="userTodo" report="userTodo"

format="PDF,HTML,CSV,XLS,RTF,TXT,XML">

<input type="hidden" name="userName" value="${todoList[0]?.owner}" />

</g:report>

</div>

</body>

</html>

Now let’s take a look at the results. Start the application, log in, and select the PDF icon.
Figure 10-11 shows the report.

CHAPTER 10 ■ REPORTING 333

10450_ch10.qxd 5/17/08 4:55 PM Page 333

Figure 10-11. The report

Congratulations, you have successfully built a reporting facility. Now that you have
one, it would be a shame to not reuse it.

The Report List
You have done a lot of good work; you have constructed all of the core components of a
reporting facility and enhanced a view with the report tag to give users access to reports.
You also saw how to use the following command to pass report parameters to the data
collection action:

<input type="hidden" name="userName" value="${todoList[0]?.owner}" />

In this case, the parameter was a hidden field, but it could have just as easily been
a visible input field.

It would be reasonable for users to say that they want to be able to specify a due-date
range and to only show to-do items that are within the range. What would it take to fulfill
such a request? Well, you would need to construct a Reports List view and hook it into the
application. This view would need to list all of the available reports. If a report doesn’t
require any additional parameters, you could execute it directly from the Reports List

CHAPTER 10 ■ REPORTING334

10450_ch10.qxd 5/17/08 4:55 PM Page 334

view. If a report requires additional parameters, it will launch another page that allows
users to specify the input parameters for the report.

The best thing is, you can reuse all of the components you just created. Pretty cool.
Given the fact that this is all a rehash of everything you have learned, we are going to leave
this as an exercise for you to develop on your own. However, if you get in a jam, check out
the application source code for this chapter in the Source Code/Download area of the Apress
web site (http://www.apress.com). We have included just such a solution in the application.

An Alternate Approach
Earlier in the chapter, we discussed using the domain model to give data to the reports
or using embedded SQL. We decided to use the domain model approach for several good
reasons, but the alternative is worth considering.

Marcos Fábio Pereira created a Jasper plug-in for Grails. As a matter of fact, Marcos’
work provided some of the inspiration for this chapter. So here is a big shout-out to Mar-
cos: thank you Marcos; your good work is appreciated.

The Jasper plug-in takes the embedded SQL approach. Depending upon your circum-
stances, this may be a good solution for you. You can take a look at the Jasper plug-in by
running:

> grails list-plugins

and locating the Jasper entry. Then run:

> grails install-plugin Jasper 0.5

A look at the Jasper tag will get you started.

Summary
You accomplished a lot in this chapter. Instead of building a static solution for one report,
you built a dynamic reporting facility that supports multiple reports and multiple formats,
and accepts input to drive the selection of report data.

In the process of building the reporting facility, you installed and configured the
JasperReports reporting engine and the iReports report designer. You used iReports to
define and compile the report template.

You then moved on to creating a report tag library. You created the ReportController
for the report tag to call. The ReportController took care of facilitating the data collection
and invoking the ReportService to generate the report. In the ReportService, you wrapped
the Todo domain objects in a JavaBeans data source, and you passed the data source,
parameters, and report template to the JasperReports reporting engine for processing.

CHAPTER 10 ■ REPORTING 335

10450_ch10.qxd 5/17/08 4:55 PM Page 335

http://www.apress.com

The reporting engine returned a binary version of the report, which the ReportController
then returned to the user.

This chapter allowed you to learn some new things, and it reinforced some things
you learned earlier. It showed you how to build a reporting facility that supports multiple
reports and formats. The next chapter leverages the ReportService in a nightly batch job
to generate and e-mail user to-do reports.

CHAPTER 10 ■ REPORTING336

10450_ch10.qxd 5/17/08 4:55 PM Page 336

Batch Processing

Grails is more than just a web framework—it is an application framework. And almost
all applications contain functionality that must be executed on a periodic basis (every
15 minutes, once an hour, twice a day, daily, weekly, month, quarterly, yearly). This is
known as batch processing.

The Grails team anticipated the need for batch processing and decided to leverage
a popular open source third-party enterprise job scheduling library: Quartz,1 from
OpenSymphony. Since the Spring Framework is a core component of Grails, and the
Spring Framework already includes a Quartz integration, this was a natural choice.
A Quartz Grails plug-in makes it easy to use the Quartz library.

Quartz is similar to the Unix cron facility in that it provides the ability to execute a job
in the future. However, Quartz is different from the Unix cron facility because it runs within
the application server and has full access to all of the application components.

This chapter explores batch-processing functionality. We will start by installing the
Quartz plug-in and creating a simple job. Then we will move on to creating a sample
batch-reporting facility.

Installing the Quartz Plug-in
As we mentioned, Grails leverages Quartz for job-scheduling functionality. The Quartz
plug-in2 integrates Quartz into Grails and makes Quartz easy to use.

To begin, from within the project directory, execute the following command:

>grails install-plugin quartz

337

C H A P T E R 1 1

1. http://www.opensymphony.com/quartz

2. http://grails.org/Quartz+plugin

10450_ch11.qxd 5/17/08 4:57 PM Page 337

http://www.opensymphony.com/quartz
http://grails.org/Quartz+plugin

This installs the plug-in:

Welcome to Grails 1.0 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: C:\Apps\grails\grails-1.0

Base Directory: <<WORKSPACE>>\collab-todo

Environment set to development

Running script C:\Apps\grails\grails-1.0\scripts\InstallPlugin.groovy

[mkdir] Created dir: <<USER_HOME>>\.grails\1.0 \plugins\quartz

[get] Getting: http://plugins.grails.org/grails-quartz/tags/RELEASE_0_2/gr

ails-quartz-0.2.zip

[get] To: <<USER_HOME>>\.grails\1.0 \plugins\quartz\grails-quartz-0.2.zip

.................................

[copy] Copying 1 file to <<WORKSPACE>>\collab-todo\plugins

[mkdir] Created dir: <<WORKSPACE>>\collab-todo\plugins\quartz-0.2

[unzip] Expanding: <<WORKSPACE>>\collab-todo\plugins\grails-quartz-0.2.zip

into <<WORKSPACE>>\collab-todo\plugins\quartz-0.2

Executing quartz-0.2 plugin post-install script ...

[mkdir] Created dir: <<WORKSPACE>>\collab-todo\grails-app\jobs

Compiling plugin quartz-0.2

Compiling 9 source files to <<USER_HOME>>\.grails\1.0 \projects\collab-todo\classes

Plugin quartz-0.2 installed

Plug-in provides the following new scripts:

--

grails create-job

As you can see, the plug-in installation created the quartz-0.2 directory under the
plugins directory, created the jobs directory under grails-app, and added a create-job

script to the Grails command line.

Creating a Job
A job is a program that contains the code you wish to run. In Grails, the job defines what
to do and when to do it.

As a simple demonstration of Quartz in action, let’s create a job that prints a message
and the current time. The first step is to create the job, as follows:

> grails create-job first

CHAPTER 11 ■ BATCH PROCESSING338

10450_ch11.qxd 5/17/08 4:57 PM Page 338

http://grails.org
http://plugins.grails.org/grails-quartz/tags/RELEASE_0_2/gr

The command generates the FirstJob class, in the grails/job directory:

class FirstJob {

def timeout = 5000l // execute job once in 5 seconds

def execute() {

// execute task

}

}

■Note Look closely at the timeout value, and you’ll see an l after the 5000. The l makes the variable
a Long. Also notice that create-job follows conventions just like other create-* commands, and appends
the suffix Job to the end of the job name.

The create-job command creates a skeleton job that is preconfigured to run once,
five seconds after the application server starts. So, five seconds after the server starts, the
code in the execute() method will be executed. Add the following code to the execute()
method:

println "Hello from FirstJob: "+ new Date()

Listing 11-1 shows the completed FirstJob class.

Listing 11-1. Completed FirstJob

class FirstJob {

def timeout = 5000l // execute job once in 5 seconds

def execute() {

println "Hello from FirstJob: "+ new Date()

}

Start the application by issuing the following command:

> grails run-app

While the comment for the timeout property in Listing 11-1 could be interpreted to
mean that the FirstJob is executed only once, you can see from the output that it is exe-
cuted every five seconds:

CHAPTER 11 ■ BATCH PROCESSING 339

10450_ch11.qxd 5/17/08 4:57 PM Page 339

Welcome to Grails 1.0 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: C:\Apps\grails\grails-1.0

. . .

Loading with installed plug-ins: ["QuartzGrailsPlugin", "WebtestGrailsPlugin"] .

. . .

Running Grails application..

. . .

Server running. Browse to http://localhost:8080/collab-todo

Hello from FirstJob: Sun Dec 16 11:23:08 EST 2007

Hello from FirstJob: Sun Dec 16 11:23:13 EST 2007

Hello from FirstJob: Sun Dec 16 11:23:18 EST 2007

Now that you’ve seen how to create a simple job, let’s move on to something a bit
more useful: a batch-reporting facility.

Building a Batch-Reporting Facility
As an example, we will build a batch-reporting facility that generates to-do reports and
e-mails them to the user nightly. We will leverage a couple of services created in earlier
chapters: EMailAuthenticatedService from Chapter 8 and ReportService from Chapter 10.
Figure 11-1 shows is an overview of the nightly reporting process.

CHAPTER 11 ■ BATCH PROCESSING340

10450_ch11.qxd 5/17/08 4:57 PM Page 340

http://grails.org
http://localhost:8080/collab-todo

Figure 11-1. Nightly reporting process

The process starts with the NightlyReportJob. When the NightlyReportJob is invoked
by Quartz, it immediately invokes the BatchService. The BatchService is the main control
routine. It facilitates the interaction with other solution components. First, the BatchService
retrieves all User objects that have an e-mail address. For each user, the BatchService
retrieves the Todo objects. The BatchService then uses the ReportService to generate a PDF
report. Finally, the BatchService uses the EmailAuthenticatedService to send the user an
e-mail attachment of the report.

Building the batch-reporting facility requires the following steps:

• Create and configure the execution of the NightlyReportJob.

• Retrieve the user’s to-dos.

• Invoke the report service (created in Chapter 10).

• Invoke the e-mail service (created in Chapter 8).

NightlyReportJob BatchService

User

ReportService

EmailAuthenticatedService

1

2

3

4

5

6

7

Todo

8

9

CHAPTER 11 ■ BATCH PROCESSING 341

10450_ch11.qxd 5/17/08 4:57 PM Page 341

Creating a Nightly Reporting Job

Issue the following command to create the NightlyReportJob:

> grails create-job NightlyReport

In addition to the timeout property, which you saw earlier in the FirstJob job, several
additional properties can be used to control job execution.

Setting the Name and Group

The name and group properties are used to help you identify jobs when interacting with
the Quartz scheduler:

class NightlyReportJob {

def name = "NightlyReport" // Job name

def group = "CollabTodo" // Job group

■Note Grails automatically binds the Hibernate session to the jobs. Having a bound session allows the job
to retrieve data from the database. If for some (rare) reason, you don’t want Grails to do this, you can tell
Grails to not bind a Hibernate session by setting the sessionRequired property to false.

Controlling Execution Frequency

There are two techniques for controlling the job execution frequency:

Use the startDelay and timeout properties: These two properties allow you to control
the execution frequency of the job. The startDelay property delays starting the job
for a number of milliseconds after the application starts up. This can be useful when
you need to let the system start up before the job starts. Grails defaults the startDelay
property to 0. The timeout property is the number of milliseconds between executions
of the job. Grails defaults the timeout property to 60,000 milliseconds, or 1 minute.

Use the cronExpression property: For all of the Unix geeks out there, this works just as
you would expect. It is a string that describes the execution frequency using a crontab
format. If you’re not familiar with this approach, don’t worry—we’ll explain the format
in more detail here.

CHAPTER 11 ■ BATCH PROCESSING342

10450_ch11.qxd 5/17/08 4:57 PM Page 342

Both techniques have their place in controlling execution frequency. Determining
which technique to use depends on the job requirements. If the job can be handled by
a timer, then setting the startDelay and timeout properties should be sufficient, as in this
example:

def startDelay = 20000 // Wait 20 seconds to start the job

def timeout = 60000 // Execute job once every 60 seconds

If the job is very time-sensitive, then using the cronExpression property is probably
more appropriate. But note that during development and initial testing of the job, you
will probably want to use the startDelay/timeout technique, and then switch to the
cronExpression approach later.

■Caution Depending on the execution frequency and duration of the job, It’s possible to have multiple
instances of a job executing concurrently. This could happen if a job is long running and still running when
the cronExpression property causes it be invoked again. Having jobs running concurrently may or may not
be desirable. By default, the Quartz plug-in permits the job to run concurrently. Most of the time, you proba-
bly won’t want to allow a job to run concurrently. You can change this behavior by setting the concurrent
property on the job to false.

A cron expression tells the job scheduler when to run the job. The cronExpression
property value is composed of six fields, separated by whitespace, representing seconds,
minutes, hours, day, month, day of week, and an optional seventh field for the year. A cron
expression expresses the fields left to right:

Seconds Minutes Hours DayOfMonth Month DayOfWeek Year

For example, we define a cronExpression property to have the job run 1:00 a.m. every
day as follows:

def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.

Table 11-1 describes the cron expression fields, and Table 11-2 summarizes some of
the more commonly used special characters.3

CHAPTER 11 ■ BATCH PROCESSING 343

3. See the Quartz documentation for a more complete explanation of the special characters:
http://www.opensymphony.com/quartz/wikidocs/CronTriggers Tutorial.html

10450_ch11.qxd 5/17/08 4:57 PM Page 343

http://www.opensymphony.com/quartz/wikidocs/CronTriggers

Table 11-1. Cron Expression Fields

Field Values Special Characters

Seconds 0–59 , - * /

Minutes 0–59 , - * /

Hours 0–23 , - * /

DayOfMonth 1–31 , - * ? / L W C

Month 1–12 or JAN–DEC , - * /

DayOfWeek 1–7 or SUN–SAT , - * ? / L #

Year (optional) Empty or 1970–2099 , - * /

Table 11-2. Cron Expression Special Characters

Character Function Example

* All values—matches all allowed * in the Hours field matches every hour of the
values within a field. day, 0–23.

? No specific value—used to specify To execute a job on the tenth day of the
something in one of the two fields month, no matter what day of the week that
in which it is allowed, but not the is, put 10 in the DayOfMonth field and ? in
other. the DayOfWeek field.

- Used to specify a range of values. 2-6 in the DayOfWeek field causes the job to
be invoked on Monday, Tuesday, Wednesday,
Thursday, and Friday.

, Used to create a list of values. MON,WED,FRI in the DayOfWeek field causes
the job to be invoked on Monday, Wednesday,
and Friday.

/ Used to specify increments. The 0/15 in the Minutes field causes the job to be
character before the slash indicates invoked on the quarter hour—0, 15, 30, and
when to start. The character after 45 minutes.
the slash represents the increment.

Cron expressions are very powerful. With a little imagination, you can specify a mul-
titude of times. Table 11-3 shows some sample cron expressions.

Table 11-3. Cron Expression Examples

Expression Meaning

0 0 1 * * ? Invoke at 1:00 a.m. every day

0 15 2 ? * * Invoke at 2:15 a.m. every day

0 15 2 * * ? Invoke at 2:15 a.m. every day

CHAPTER 11 ■ BATCH PROCESSING344

10450_ch11.qxd 5/17/08 4:57 PM Page 344

Expression Meaning

0 15 2 * * ? * Invoke at 2:15 a.m. every day

0 15 2 * * ? 2008 Invoke at 2:15 a.m. every day during the year 2008

0 * 13 * * ? Invoke every minute starting at 1 p.m. and ending at 1:59 p.m., every day

0 0/5 14 * * ? Invoke every 5 minutes starting at 2 p.m. and ending at 2:55 p.m., every
day

0 0/5 14,18 * * ? Invoke every 5 minutes starting at 2 p.m. and ending at 2:55 p.m., and
invoke every 5 minutes starting at 6 p.m. and ending at 6:55 p.m., every
day

0 0-5 14 * * ? Invoke every minute starting at 2 p.m. and ending at 2:05 p.m., every day

0 10,45 14 ? 3 WED Invoke at 2:10 p.m. and at 2:45 p.m. every Wednesday in the month of
March

0 15 2 ? * MON-FRI Invoke at 2:15 a.m. every Monday, Tuesday, Wednesday, Thursday, and
Friday

0 15 2 15 * ? Invoke at 2:15 a.m. on the fifteenth day of every month

0 0 12 1/5 * ? Invoke at 12 p.m. (noon) every 5 days every month, starting on the first
day of the month

0 11 11 25 12 ? Invoke every December 25 at 11:11 a.m.

Listing 11-2 shows the definition for the NightlyReportJob. Notice that it includes
both techniques for controlling execution frequency, with the startDelay/timeout defini-
tions commented out.

Listing 11-2. NightlyReportJob Name, Group, and Execution Frequency Configuration

class NightlyReportJob {

def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.

def name = "Nightly" // Job name

def group = "CollabTodo" // Job group

// def startDelay = 20000 // Wait 20 seconds to start the job

// def timeout = 60000 // Execute job once every 60 seconds

You can see why the Grails team chose to integrate Quartz instead of creating some-
thing new. It is very powerful. Armed with this knowledge, you are ready to move on and
implement the core logic of the nightly report job.

CHAPTER 11 ■ BATCH PROCESSING 345

10450_ch11.qxd 5/17/08 4:57 PM Page 345

Retrieving the User’s To-Dos

The next step is to leverage Spring’s auto-wired dependency injection to inject the
BatchService into the job, as follows:

> grails create-service Batch

Listing 11-3 illustrates injection and execution of the BatchService.

Listing 11-3. NightlyReportJob with Batch Service

class NightlyReportJob {

def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.

def name = "Nightly" // Job name

def group = "CollabTodo" // Job group

// def startDelay = 20000 // Wait 20 seconds to start the job

// def timeout = 60000 // Execute job once every 60 seconds

def batchService

def execute() {

log.info "Starting Nightly Job: "+new Date()

batchService.nightlyReports.call()

log.info "Finished Nightly Job: "+new Date()

}

}

The code is straightforward. It defines when the job is to run and delegate to the
BatchService.

The next step is to create the nightly closure on the batch service. It will contain the
code to retrieve the user’s to-dos. Listing 11-4 illustrates adding the nightly closure and
retrieving the user’s to-dos.

Listing 11-4. Batch Service Nightly Closure

class BatchService

. . .

CHAPTER 11 ■ BATCH PROCESSING346

10450_ch11.qxd 5/17/08 4:57 PM Page 346

/*

* Runs nightly reports

*/

def nightlyReports = {

log.info "Running Nightly Reports Batch Job: "+new Date()

// 1. Gather user w/ email addresses.

def users = User.withCriteria {

isNotNull('email')

}

users?.each { user ->

// 2. Invoke report service for each user.

// Can't reuse ReportController because it makes too

// many assumptions, such as access to session.class.

//

// Reuse Report Service and pass appropriate params.

// Gather the data to be reported.

def inputCollection = Todo.findAllByOwner(user)

// To be completed in the next section

}

log.info "Completed Nightly Reports Batch Job: "+new Date()

}

The BatchService.nightlyReports gets all users with an e-mail address, and then for
each user, gets their to-dos and prepares to invoke the report service.

Invoking the Report Service

In Chapter 10, you used JasperReports to build a report facility. You can reuse components
of the report facility to create a to-do report PDF to attach to the e-mail.

Your first thought might be to use the ReportController. Well, that doesn’t work. The
report controller is dependent on the HTTP session and renders the PDF to the output
stream. You need to go one level deeper and use the ReportService directly.

We have already retrieved the user’s to-dos. Now all we need to do is pass the to-dos,
report template, and a username parameter to the report service. The highlighted section
of Listing 11-5 illustrates the required steps.

CHAPTER 11 ■ BATCH PROCESSING 347

10450_ch11.qxd 5/17/08 4:57 PM Page 347

Listing 11-5. Invoke the Report Service

class BatchService {

ReportService reportService // Inject ReportService

def nightlyReports = {

. . .

users?.each { user ->

// 2. Invoke Report Service for each user.

// Reuse Report Service and pass appropriate params.

// Gather the data to be reported.

def inputCollection = Todo.findAllByOwner(user)

Map params = new HashMap()

params.inputCollection = inputCollection

params.userName = user.firstName+" "+user.lastName

// Load the report file.

def reportFile = this.class.getClassLoader().getResource(

"web-app/reports/userTodo.jasper")

ByteArrayOutputStream byteArray = reportService.generateReport(reportFile,

reportService.PDF_FORMAT,params)

Map attachments = new HashMap()

attachments.put("TodoReport.pdf", byteArray.toByteArray())

// 3. Email results to the user.

sendNotificationEmail(user, attachments)

}

}

The new code works as follows:

• Injects the ReportService into the BatchService.

• Creates a HashMap of parameters that will be passed to the ReportService. The
parameters include the list of to-dos for the current user.

• Loads the JasperReports template from the classpath.

• Invokes reportService.generateReport to pass the report template, report format
(PDF), and parameters.

CHAPTER 11 ■ BATCH PROCESSING348

10450_ch11.qxd 5/17/08 4:57 PM Page 348

Now that you have a PDF report, the next step is to e-mail it to the user.

Invoking the E-Mail Service

In Chapter 8, you implemented an SMTP e-mail service, called EMailAuthenticatedService.
You can use your e-mail service to send the to-do report to the user. Listing 11-6 contains
the code required to create and send the e-mail.

Listing 11-6. Sending the E-mail

01 class BatchService implements ApplicationContextAware {

02 boolean transactional = false

03

04 public void setApplicationContext(ApplicationContext applicationContext) {

05 this.applicationContext = applicationContext

06 }

07 def ApplicationContext applicationContext

08 def EMailAuthenticatedService EMailAuthenticatedService // injected

09

10 ReportService reportService

11

12 def nightlyReports = {

13

14 . . .

15

16 // Load the report file

17 def reportFile = this.class.getClassLoader().getResource(

18 "web-app/reports/userTodo.jasper")

19 ByteArrayOutputStream byteArray =

20 reportService.generateReport(reportFile,

21 reportService.PDF_FORMAT,params)

22

23 Map attachments = new HashMap()

24 attachments.put("TodoReport.pdf", byteArray.toByteArray())

25

26 // 3. Email results to the user.

27 sendNotificationEmail(user, attachments)

28 }

29 log.info "Completed Nightly Batch Job: "+new Date()

30 }

31

CHAPTER 11 ■ BATCH PROCESSING 349

10450_ch11.qxd 5/17/08 4:57 PM Page 349

32 def private sendNotificationEmail = {User user, Map attachments ->

33 def emailTpl = this.class.getClassLoader().getResource(

34 "web-app/WEB-INF/nightlyReportsEmail.gtpl")

35 def binding = ["user": user]

36 def engine = new SimpleTemplateEngine()

37 def template = engine.createTemplate(emailTpl).make(binding)

38 def body = template.toString()

39 def email = [

40 to: [user.email],

41 subject: "Your Collab-Todo Report",

42 text: body

43]

44 try {

45 EMailProperties eMailProperties =

46 applicationContext.getBean("eMailProperties")

47 eMailAuthenticatedService.sendEmail(email, eMailProperties, attachments)

48 } catch (MailException ex) {

49 log.error("Failed to send emails", ex)

50 }

51 }

52 }

The highlighted lines contain the changes made to the batch service. Lines 1 and 4–7
make the batch service (Spring) application context-aware; in other words, the Spring
application context is injected into the service. You will use the application context later
to look up some information. Line 8 takes advantages of Spring auto-wiring to inject the
EmailAuthenticatedService. Lines 23 and 24 add the PDF report to a map of attachments
for e-mail. Line 27 invokes a local sendNotificationEmail closure.

Lines 32–51 contain the code to send the to-do report e-mail to the user. Line 33 loads
an e-mail template. Lines 36–38 use the Groovy SimpleTemplateEngine4 to generate the e-mail
body. Lines 39–43 define a map of e-mail parameters that will be passed to the e-mail serv-
ice. Line 45 uses the Spring application context to look up e-mail properties, including the
“from” address. Line 47 invokes the e-mail service, sending the e-mail map, e-mail prop-
erties, and the attachments.

CHAPTER 11 ■ BATCH PROCESSING350

4. http://groovy.codehaus.org/Groovy+Templates

10450_ch11.qxd 5/17/08 4:57 PM Page 350

http://groovy.codehaus.org/Groovy+Templates

Summary
This chapter demonstrated Grails’ ability to reuse open source, third-party Java libraries.
You installed the Quartz plug-in, created a simple job, and saw how to control the fre-
quency of execution using the timeout property.

Next, you started to build the batch-reporting facility. You created a NightlyReportJob

and configured it to run at 1:00 a.m. using the cronExpression property. You learned that
cron expressions are very robust and provide fine-grained control over when the
NightlyReportJob is invoked.

The NightlyReportJob delegated to a batch service that was injected using Spring auto-
wiring injection and invoked nightlyReports. nightlyReports iterated through a list of users,
gathered their to-dos, invoked the report service built in Chapter 10 to generate a PDF
attachment, and e-mailed the attachment to the user using the EmailAuthenticatedService
built in Chapter 8.

This chapter provided a brief introduction to the Quartz package. For more informa-
tion, check out the Quartz web site.5

CHAPTER 11 ■ BATCH PROCESSING 351

5. http://www.opensymphony.com/quartz

10450_ch11.qxd 5/17/08 4:57 PM Page 351

http://www.opensymphony.com/quartz

10450_ch11.qxd 5/17/08 4:57 PM Page 352

Deploying and Upgrading

The previous chapters have been related to developing Grails applications. One of the
strengths of Grails is that it comes bundled with everything you need to begin developing
and testing your application. Grails embeds a web container (Jetty) and a relational data-
base (HSQLDB). All you have to do is execute the Grails run-app target, and you have your
entire runtime environment. However, at some point in time, you will want to expose your
application to your users. The embedded runtime environment is for development and
testing only, and it is not intended to scale or support the load necessary in a production
environment.

This chapter focuses on deploying Grails applications to Java EE application servers
and more robust database servers. It also covers some other miscellaneous, operational
aspects, such as upgrading a Grails application when a new version of the Grails frame-
work is released and automating tasks using Gant.

Deploying Grails Applications
Deploying a Grails application involves three steps. First, you need to configure the appli-
cation. This typically involves environment-specific configurations. Second, you package
the application. For Grails applications, this means bundling all the code and related arti-
facts into a WAR file. The final step is to actually deploy the application to an application
server or web container.

Using Environments

Many organizations have multiple environments or gates that an application must pass
through before reaching production and users. At a minimum, each application should
have to pass through development, test, and production environments. The development
environment is the developer’s machine. In the test environment, which mimics produc-
tion, somebody other than the developer completes quality assurance by validating that
the application meets requirements and generally works. The production environment is

353

C H A P T E R 1 2

10450_ch12.qxd 5/27/08 1:16 PM Page 353

where real users use the application. In each of these environments, you’re likely to have
environment-specific configurations and, rarer, behavioral differences. For example, in
development, you may want to point to a local HSQLDB in-memory database, but in the
test and production environments, you may need to point at a remote server database
such as MySQL.1

As you might expect, Grails follows these best practices and is aware of these three
environments. You can use these environments when calling the grails command line as
the second parameter or in configuration files such as DataSource.groovy and Config.groovy,
which you’ll see in the next section. Table 12-1 shows the mapping per environment.

Table 12-1. Environment Mappings

Environment Command Line Configuration File Reference

Development dev development

Test test test

Production prod production

Depending on the size of the organization and the criticalness of the application or the
system, you may have additional environments such as integration testing (IT), user accept-
ance testing (UAT), and performance testing (PT). You can use custom environments as well.
The only requirement is that the grails.env system property must be passed to the grails
command line. For example, the following would specify the performance environment:

> grails -Dgrails.env=PT run-app

Understanding Grails Configurations

Grails contains four primary configuration categories. The first is URL mapping, which
we explained and demonstrated thoroughly in Chapter 9, so we won’t be revisiting it
here. The second is behavior when the application starts up and shuts down. The third
and fourth are data source and logging configurations. You can find all these configura-
tions in the grails-app/config directory.

Startup and Shutdown Behavior

Sometimes when an application starts up and/or shuts down, you need to do things such
as acquire and release resources, respectively, or cache data. Grails makes this possible in
the grails-app/config/BootStrap.groovy file, which you first saw in Chapter 7. Listing 12-1

CHAPTER 12 ■ DEPLOYING AND UPGRADING354

1. http://www.mysql.org/

10450_ch12.qxd 5/27/08 1:16 PM Page 354

http://www.mysql.org

is an example of a BootStrap.groovy file. It includes comments where startup and shutdown
code would go.

Listing 12-1. Using BootStrap.groovy to Perform Startup and Shutdown Activities

class BootStrap {

def init = { servletContext ->

// perform startup activities here

}

def destroy = {

// perform shutdown activities here

}

}

The init action is invoked when the application starts up or is redeployed. The
javax.servlet.ServletContext2 is passed in, providing access to the application attributes,
initialization parameters configured in web.xml, the context path, and more. The destroy
action is invoked when the application is shut down, but it is not guaranteed to be called.
For example, it is not likely the destroy method will be called when the application server
is shut down, but it is likely to be called when the application is redeployed or undeployed.

■Note As discussed and demonstrated in Chapter 7’s “Bootstrapping” sidebar, you can use the GrailsUtil.
environment() to determine which environment the application is running in and perform the appropriate
bootstrapping code.

Data Source Configurations

By default, Grails is configured out of the box to use an embedded, in-memory HSQLDB
database. This is not likely to be the database used in the test and production environ-
ments and possibly not even in most development environments, because as you’ve
seen, each time the application restarts, the database gets re-created in memory and is
therefore empty. It’s more likely that an application will use a server database such as
MySQL, Oracle,3 DB2,4 Microsoft SQL Server,5 or maybe even Apache Derby.6 It might

CHAPTER 12 ■ DEPLOYING AND UPGRADING 355

2. http://java.sun.com/products/servlet/2.5/docs/servlet-2_5-mr2/javax/servlet/ServletContext.html

3. http://www.oracle.com

4. http://www.ibm.com/db2

5. http://www.microsoft.com/sql/

6. http://db.apache.org/derby/

10450_ch12.qxd 5/27/08 1:16 PM Page 355

http://java.sun.com/products/servlet/2.5/docs/servlet-2_5-mr2/javax/servlet/ServletContext.html
http://www.oracle.com
http://www.ibm.com/db2
http://www.microsoft.com/sql
http://db.apache.org/derby

even use HSQLDB in a file mode. Any Hibernate-supported database7 should be able to
be used.

You can set database and Hibernate configurations in the grails-app/config/
DataSource.groovy file. Listing 12-2 shows an example of a DataSource.groovy file that
has been customized to include a production database configuration for a local MySQL
database.

■Note You can find installation and configuration instructions for MySQL at http://www.
beginninggroovyandgrails.com.

Listing 12-2. DataSource.groovy Containing a MySQL Production Configuration

01 dataSource {

02 pooled = false

03 driverClassName = "org.hsqldb.jdbcDriver"

04 username = "sa"

05 password = ""

06 }

07 hibernate {

08 cache.use_second_level_cache=true

09 cache.use_query_cache=true

10 cache.provider_class='org.hibernate.cache.EhCacheProvider'

11 }

12 // environment specific settings

13 environments {

14 development {

15 dataSource {

16 dbCreate = "create-drop" // one of 'create', 'create-drop','update'

17 url = "jdbc:hsqldb:mem:devDB"

18 }

19 }

20 test {

21 dataSource {

22 dbCreate = "update"

23 url = "jdbc:hsqldb:mem:testDb"

24 }

25 }

CHAPTER 12 ■ DEPLOYING AND UPGRADING356

7. http://www.hibernate.org/80.html

10450_ch12.qxd 5/27/08 1:16 PM Page 356

http://www
http://www.hibernate.org/80.html

26 production {

27 dataSource {

28 pooled = true

29 driverClassName = "com.mysql.jdbc.Driver"

30 username = "root"

31 password = "<password>"

32 dbCreate = "update"

33 url = "jdbc:mysql://localhost:3306/collab_todo"

34 }

35 }

36 }

The configuration file in Listing 12-2 is separated into three main parts: dataSource
(lines 1–6), hibernate (lines 7–11), and environment-specific settings (lines 12–36). The
dataSource section provides default database settings that environment-specific settings
may override or append to. Other than the pooled property, these default settings all
relate to standard JDBC configuration information, such as the JDBC driver class name,
the username, and the password for the database.

The hibernate section relates to Hibernate-specific settings. By default, it configures
Hibernate caching settings. See the Hibernate documentation8 for more configuration
options.

Finally, the environment-specific settings can provide specific data source or Hibernate
configurations for a particular named environment. Notice in lines 28–33 that the production
dataSource is configured to use a MySQL database by setting the driverClassName and url to
be MySQL-specific. It also overrides the pooled property by setting it to true, since most pro-
duction environments have more concurrent needs than a developer’s workstation. Finally,
note that the dbCreate property is configured only for update. This means that at deployment
time, Hibernate will update any of the tables it is able to, but it will leave the existing data
intact. On the other hand, the default development configuration will create the table at
startup and destroy the tables and data when the application is shut down.

The DataSource.groovy configuration file is not the only application configuration
that you must complete to support connection to the database. You also must include
the database driver JAR in the classpath of the application. The easiest way to do this is
to simply copy the JAR(s) to the project lib directory. At deployment or packaging time,
Grails will copy the JAR file to the WEB-INF/lib directory. For a MySQL database, you
would need to copy the mysql-connector-java-X.X.X-bin.jar file to the lib directory.

CHAPTER 12 ■ DEPLOYING AND UPGRADING 357

8. http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html

10450_ch12.qxd 5/27/08 1:16 PM Page 357

mysql://localhost:3306/collab_todo
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html

Logging Configurations

Logging is an important part of gathering feedback about the state of an application. As
you learned in Chapter 5, Grails provides logging support using the Apache Commons
Logging component9 and Apache log4j.10 You can make the log4j configurations, as well
as a couple other configurations, in grails-app/config/Config.groovy. Listing 12-3 shows
the default version of Config.groovy.

Listing 12-3. Config.groovy File Containing Logging Configurations

01 // log4j configuration

02 log4j {

03 appender.stdout = "org.apache.log4j.ConsoleAppender"

04 appender.'stdout.layout'="org.apache.log4j.PatternLayout"

05 appender.'stdout.layout.ConversionPattern'='[%r] %c{2} %m%n'

06 rootLogger="error,stdout"

07 logger {

08 grails="info,stdout"

09 org {

10 codehaus.groovy.grails.web.servlet="off,stdout" // controllers

11 codehaus.groovy.grails.web.pages="off,stdout" // GSP

12 codehaus.groovy.grails.web.sitemesh="off,stdout" // layouts

13 codehaus.groovy.grails."web.mapping.filter"="off,stdout" // URL mapping

14 codehaus.groovy.grails."web.mapping"="off,stdout" // URL mapping

15 codehaus.groovy.grails.commons="off,stdout" // core / classloading

16 codehaus.groovy.grails.plugins="off,stdout" // plugins

17 codehaus.groovy.grails.orm.hibernate="info,stdout" // hibernate integration

18 springframework="off,stdout"

19 hibernate="off,stdout"

20 }

21 }

22 additivity.'default' = false

23 additivity {

24 grails=false

25 org {

26 codehaus.groovy.grails=false

27 springframework=false

28 hibernate=false

CHAPTER 12 ■ DEPLOYING AND UPGRADING358

9. http://commons.apache.org/logging/

10. http://logging.apache.org/log4j/1.2/

10450_ch12.qxd 5/27/08 1:16 PM Page 358

http://commons.apache.org/logging
http://logging.apache.org/log4j/1.2

29 }

30 }

31 }

32

33 // The following properties have been added by the Upgrade process...

34 grails.views.default.codec="none" // none, html, base64

35 grails.views.gsp.encoding="UTF-8"

In Listing 12-3, lines 2–31 configure log4j, while the remaining lines set some default
configurations for views. When the application logs a message, something has to be done
with the message. Lines 3–5 configure a ConsoleAppender, which takes the message and
writes it to standard out with the format defined by the pattern in line 5. Line 6 instructs
log4j to send only messages with severities of error or greater to the appender unless
explicitly overwritten. Lines 7–20 show examples of overriding some logging. For exam-
ple, on line 8, the grails logger says to include anything with a log level of info or above,
while line 10 turns off org.codehaus.groovy.grails.web.servlet completely.

■Note There are a lot of configuration options for log4j. Check out the “Short introduction to log4j”11 for
more details.

Grails provides some special loggers for the different types of artifacts that it already
understands by conventions. Table 12-2 documents the special loggers you will find help-
ful for seeing your log messages.

Table 12-2. Special Grails Artifact Loggers

Logger Description

grails.app.controller Configures logging for all your controllers

grails.app.domain Configures logging for all your domains

grails.app.service Configures logging for all your services

grails.app.tagLib Configures logging for all your tag libraries

The most likely log configuration you will want to make is adding environment-
specific logging for your artifacts; you can use the loggers described in Table 12-2. For
example, in your development environment, you may want to log messages at a debug

CHAPTER 12 ■ DEPLOYING AND UPGRADING 359

11. http://logging.apache.org/log4j/1.2/manual.html

10450_ch12.qxd 5/27/08 1:16 PM Page 359

http://logging.apache.org/log4j/1.2/manual.html

level (as shown in Listing 12-4), but in your production environment, you may want to
log fewer messages for performance reasons and to ensure that the log file doesn’t con-
sume all your disk space.

Listing 12-4. Example of Adding Logging Specific to Your Development Environment

environments {

development {

log4j {

logger {

grails {

app.controller="debug"

}

}

}

}

}

Listing 12-4 shows an example of logging all controllers at a debug level. You can
simply add this configuration to the end of the Config.groovy file and then restart the
application for the new development-specific logging configuration to take effect.

Packaging the Application for Deployment

After you complete the application functionality for an iteration or a release, you or your
build master will have to package your application so it can be deployed on a machine other
than your computer. At the most basic level, all you have to do is run the Grails war target to
create a deployable WAR file. In reality, though, you should follow a more disciplined process
to make it easier to identify the version of your application as it goes through environments.
We recommended you follow this procedure for milestone releases:

1. Update the code from your version control repository to make sure it’s in sync
with the head/trunk.

2. Run unit and smoke tests to verify that the release is ready.

3. Increment the app.version property in application.properties either manually or
by using the grails set-version target to identify a milestone release number, such
as X.X.X.

CHAPTER 12 ■ DEPLOYING AND UPGRADING360

10450_ch12.qxd 5/27/08 1:16 PM Page 360

4. Clean the project using the grails clean target to make sure there are no leftover
artifacts.

5. Package the application into a WAR file using the grails war target and an environ-
ment designation—for example, grails prod war. This creates a WAR file in the
root of the project with a name containing the project name and version number.

6. Increment the app.version property and append a -SNAPSHOT in application.
properties either manually or by using the grails set-version target to indicate
this version is a work in progress and not a milestone release.

7. Commit the application.properties file back into your version control repository.

Now you have a WAR file ready for deployment. We’ll discuss how to deploy it in the
next section.

Deploying to an Application Server

A Grails application packaged as a WAR file can be deployed to Java EE application servers
such as JBoss,12 GlassFish,13 Apache Geronimo,14 BEA WebLogic,15 or IBM WebSphere,16 or
to a web container such as Apache Tomcat17 or Jetty.18 Deployment between containers
varies greatly, so consult your application server or web container documentation for
details. However, standard mechanisms include special deployment directories where the
WAR can be copied, a web-based administrator console, a command-line client, and/or
Apache Ant tasks. Grails does not provide anything for simplifying deployments, so the
next section explains how you can write your own script to automate the process.

■Note The Grails FAQ19 has specific configurations and tips for deploying Grails applications to some com-
mon application servers.

CHAPTER 12 ■ DEPLOYING AND UPGRADING 361

12. http://labs.jboss.com/jbossas/

13. https://glassfish.dev.java.net/

14. http://geronimo.apache.org/

15. http://www.bea.com

16. http://www.ibm.com/software/websphere

17. http://tomcat.apache.org/

18. http://www.mortbay.org/

19. http://www.grails.org/FAQ

10450_ch12.qxd 5/27/08 1:16 PM Page 361

http://labs.jboss.com/jbossas
https://glassfish.dev.java.net
http://geronimo.apache.org
http://www.bea.com
http://www.ibm.com/software/websphere
http://tomcat.apache.org
http://www.mortbay.org
http://www.grails.org/FAQ

HTTPS

Many applications require that the information passed from the browser to the server be encrypted to
ensure the data is not intercepted along the way. This is usually done using a secure HTTP connection,
otherwise known as HTTP over Secure Socket Layer (SSL), or HTTPS. Configuring HTTPS is an applica-
tion server–specific configuration, so you should check your application server documentation to learn
how to configure it. However, it can be critical to test your application within an HTTPS context, so
Grails provides the ability to start your Grails application using HTTPS instead of HTTP. Instead of exe-
cuting grails run-app, you use grails-run-https. This starts your server so it is available under
port 8080 as well as port 8443 using an HTTPS protocol—for example, https://localhost:8443/
collab-todo/. Running the server in this mode causes a temporary certificate to be generated, as
shown in the following figure. You’ll be prompted with an unknown certifying authority error, which
makes this method unsuitable for production use but fine for testing.

CHAPTER 12 ■ DEPLOYING AND UPGRADING362

10450_ch12.qxd 5/27/08 1:16 PM Page 362

https://localhost:8443

Automating Tasks with Gant
Development is full of cycles and repetitive tasks, such as compiling, packaging, and
deploying. Performing such tasks manually can be boring and error prone. It is consid-
ered a best practice to automate such tasks. Many books have been written to this effect,
and many frameworks have been developed to solve the problem. In fact, one of the pri-
mary conventions for Grails is the grails command line, which is used to automate
common tasks in Grails development. The Grails command line utilizes Gant,20 a build
system that uses the Groovy language to script Apache Ant21 tasks rather than Ant’s XML
format. Ant, and therefore Gant, are primarily made up of name collections of tasks
referred to as targets, which you can execute to complete a unit of work.

■Note Neal Ford,22 author and frequent speaker on the “No Fluff Just Stuff” symposium series,23 describes
the importance of automation as, “Doing work like a manual laborer makes you dumber, figuring out how to
automate it makes you smarter so be a craftsman not a laborer.”

As you have seen throughout this book, the Grails command line provides a lot of
functionality. However, it may not automate every task you perform during your devel-
opment. For example, there is no task for deploying, and yet it is common to deploy
your application to infrastructure that matches the application server and database
you use in a production environment. So from time to time, you may want to simplify
your development efforts by creating your own Gant scripts or modifying existing ones.

Grails makes it easy to incorporate your scripts into your development process. After
all, every Grails command-line task is itself a Gant script already. The Grails command
line uses the following directories to locate scripts for execution and incorporate them
into the help system:

• USER_HOME/.grails/scripts

• PROJECT_HOME/scripts

• PROJECT_HOME/plugins/*/scripts

• GRAILS_HOME/scripts

CHAPTER 12 ■ DEPLOYING AND UPGRADING 363

20. http://gant.codehaus.org

21. http://ant.apache.org

22. http://www.nfjs-exchange.com/neal-ford

23. http://www.nofluffjuststuff.com

10450_ch12.qxd 5/27/08 1:16 PM Page 363

http://gant.codehaus.org
http://ant.apache.org
http://www.nfjs-exchange.com/neal-ford
http://www.nofluffjuststuff.com

After writing your Gant script, you can place it in one of these directories, and it will
automatically be available from the Grails command line and in the Grails help list.

Grails does not include a deployment script, because there are too many application
servers and configuration options to keep up. Listing 12-5 shows an example of a simple
script you can use to deploy a WAR file to an application server that supports automatic
deployments via a deployment directory like JBoss has.

■Note You can find installation and configuration instructions for JBoss at http://www.
beginninggroovyandgrails.com.

Listing 12-5. Basic Deployment Script Deploy.groovy

01 /**

02 * Gant script that copies a WAR file to an application

03 * server deployment directory.

04 */

05

06 Ant.property(environment:"env")

07 grailsHome = Ant.antProject.properties."env.GRAILS_HOME"

08

09 includeTargets << new File ("${grailsHome}/scripts/War.groovy")

10

11 target ('default':'''Copies a WAR archive to a Java EE app server's deploy

12 directory.

13

14 Example:

15 grails deploy

16 grails prod deploy

17 ''') {

18 deploy()

19 }

20

21 target (deploy: "The implementation target") {

22 depends(war)

23

24 def deployDir = Ant.antProject.properties.'deploy.dir'

25

26 Ant.copy(todir:"${deployDir}", overwrite:true) {

27 fileset(dir:"${basedir}", includes:"*.war")

CHAPTER 12 ■ DEPLOYING AND UPGRADING364

10450_ch12.qxd 5/27/08 1:16 PM Page 364

http://www

28 }

29

30 event("StatusFinal", ["Done copying WAR to ${deployDir}"])

31 }

The Deploy.groovy script shown in Listing 12-5 begins by loading all system environ-
ment variables and then storing the GRAILS_HOME environment variable into a local variable
on lines 6 and 7. Line 9 imports another Gant script—specifically, the War.groovy script. The
deploy script is dependent on the War.groovy script to build the WAR file, so it has some-
thing to deploy.

Lines 11–19 represent the first of two targets in this script. The first target is the default
target, which means if no other target is specified, this will be the one executed. Since Grails
calls the default target, it will definitely be the one executed. Notice that the default name
is in single quotes; this is because the word default is a reserved word in Groovy. Quotes are
not normally needed for target names. Following the name is the target description, which
the Grails help system uses. The only behavior the default target has is to call the deploy
target.

The deploy target, shown on lines 21–31, does all the real work. It begins by calling
the war target from the War.groovy script. After the WAR file has been created, it looks up
the deploy.dir property. It then copies the WAR file to the location of this property. You
can put the destination of the WAR file in the application.properties file, since the Grails
command line loads it automatically. Lines 26–28 use the Ant copy task to copy all WAR
files to the deployment directory. Finally, a message is printed to the system out to indi-
cate to the user that the script is complete and which directory the WAR file has been
copied to.

Running the following target performs the deployment by copying the WAR file to
your application server:

> grails deploy

■Note If you need to deploy to a remote application server, you might be able to use Apache Ant’s Secure
Copy Protocol (SCP) task to copy a WAR to a remote server running Secure Shell (SSH).

Upgrading Grails Applications
Early in the development of the Grails framework, it must have become obvious that the
framework would go through many iterations and that some mechanism was needed to
ensure that applications could migrate easily to new releases of the Grails framework. As
with many of the Grails conventions, this is accomplished through a Grails target, upgrade.

CHAPTER 12 ■ DEPLOYING AND UPGRADING 365

10450_ch12.qxd 5/27/08 1:16 PM Page 365

During the startup of an application using the run-app target, Grails checks the appli-
cation metadata found in the application.properties file (see Listing 12-6) located in the
root of the project directory structure for the app.grails.version number.

Listing 12-6. The application.properties File

#Do not edit app.grails.* properties, they may change automatically.

#DO NOT put application configuration in here, it is not the right place!

#Fri Dec 28 22:26:01 EST 2007

app.version=0.1

app.servlet.version=2.4

app.grails.version=1.0

app.name=collab-todo

If the currently configured version of Grails doesn’t match the application metadata’s
app.grails.version number, Grails will display the following message:

Application expects grails version [1.0], but GRAILS_HOME is version [1.0.2] –

use the correct Grails version or run 'grails upgrade' if this Grails version is

newer than the version your application expects.

Upgrading the application is as easy as running grails upgrade.

■Caution When upgrading, Grails may overwrite existing files. It’s a good idea to ensure your application
is in sync with your version control repository before running the upgrade target.

Summary
This chapter covered a lot of the operational aspects of developing Grails applications. Many
of the topics related to things that happen after the code is written or to helping facilitate the
development process. The topics included packaging and deploying the application as well
as configuring environmental data sources and logging. It also covered how to automate
your daily development processes and upgrade your applications to work with new versions
of Grails. This chapter also ends the server-side discussion of Grails. The remaining chapter
discusses aspects of writing clients that may utilize the deployed application.

CHAPTER 12 ■ DEPLOYING AND UPGRADING366

10450_ch12.qxd 5/27/08 1:16 PM Page 366

Alternative Clients

In Chapter 9, you developed a RESTful web services facility for the Collab-Todo applica-
tion. You’re now able to go to your browser, type in the URL, and perform basic CRUD
operations against the domain objects using XML or JSON. In this chapter, you’re going
to see how you can use Groovy to consume the web services.

The first part of this chapter will take a look at writing Groovy scripts to consume the
web services from the command line. The second part of this chapter will build upon the
first part to build a rich Groovy client, using a Swing application that leverages the web
services.

Overview
In Chapter 9, you developed a RESTful web service to perform CRUD operations using
XML or JSON. Figure 13-1 is an overview of the components you will be developing in
this chapter.

Figure 13-1. Overview

Groovy
Command-Line

Scripts

RestController

<XML>
. . .

</XML>

Rich
Groovy
Client

367

C H A P T E R 1 3

10450_ch13.qxd 5/27/08 11:18 PM Page 367

Setup
In this chapter, you will use Groovy to create the Groovy command-line scripts and rich
Groovy client. In Chapter 1, you installed Groovy. To complete this chapter, you need to
download and install some additional libraries that aren’t part of the Groovy installation.
The libraries you need to complete this chapter are SwingXBuilder,1 SwingX,2 JGoodies3

Forms, and Glazed Lists.4 After you download the libraries, you have three choices of
where to install them:5 on your CLASSPATH environment variable, in <GROOVY_HOME>\lib, or
in <USER_HOME>\groovy\lib.

SwingXBuilder is a Groovy builder used to construct Swing user interfaces.
SwingXBuilder uses the SwingLabs (SwingX) components. The SwingXBuilder and
SwingX components make it much easier to build the Swing application than it would
be to construct it by hand. JGoodies FormLayout is a popular Swing layout manager
that uses a grid approach; you’ll use it to position components within the Swing appli-
cation. Glazed Lists is an extremely powerful Swing table component that you’ll use to
display to-do item summary information.

Use the information in Table 13-1 to download and install the libraries.

Table 13-1. Additional Libraries

Library Download URL

SwingXBuilder http://docs.codehaus.org/download/attachments/80916/
swingxbuilder-0.1.5.jar?version=1

SwingX https://swingx.dev.java.net/files/documents/2981/76227/
swingx-0.9.1.zip6

JGoodies Forms https://glazedlists.dev.java.net/files/documents/1073/94614/
glazedlists_java14.jar

Glazed Lists http://www.jgoodies.com/download/libraries/forms/forms-1_2_0.zip

CHAPTER 13 ■ ALTERNATIVE CLIENTS368

1. http://groovy.codehaus.org/SwingXBuilder

2. http://swinglabs.org/

3. http://www.jgoodies.com/

4. http://publicobject.com/glazedlists/

5. http://groovy.codehaus.org/faq.html#classpath

6. You will need to unzip the file and copy the JAR files in the dist and lib\optional directories to the
appropriate location for your particular setup.

10450_ch13.qxd 5/27/08 11:18 PM Page 368

http://docs.codehaus.org/download/attachments/80916
https://swingx.dev.java.net/files/documents/2981/76227
https://glazedlists.dev.java.net/files/documents/1073/94614
http://www.jgoodies.com/download/libraries/forms/forms-1_2_0.zip
http://groovy.codehaus.org/SwingXBuilder
http://swinglabs.org
http://www.jgoodies.com
http://publicobject.com/glazedlists
http://groovy.codehaus.org/faq.html#classpath

■Note During the installation of Groovy, if you selected the Install Additional Modules options, you’ll only
need to download the JGoodies Forms and Glazed Lists libraries. In addition, if you selected the File Associa-
tions and PATHEXT options, you will be able to run scripts by typing the name of the script. For example, you
can execute MyScript.groovy by typing MyScripts at the command line.

You now have the core components required to build the command-line scripts and
the rich Groovy client.

Command-Line Scripts
All throughout the book, you have been using Groovy to build the Collab-Todo applica-
tion. You have been using the Groovy language to build domain objects, controllers, and
services, but that isn’t the only way to use Groovy, as you saw in Chapters 1–3.

Command-Line Overview

Wouldn’t it be nice if you had the ability to run CRUD operations on your to-do items from
the command line? In this section, you will create the scripts to do just that. Chapter 9
introduced four client applications (GetRestClient.groovy, PutRestClient.groovy,
PostRestClient.groovy, and DeleteRestClient.groovy) to demonstrate accessing the
RESTful web service. You will use these as a starting point and make some enhancements.

Reading To-Do Items

Let’s create a script that will invoke the RESTful web service facility created in Chapter 9
and display the results in a simple text format. The GetRestClient.groovy script from
Chapter 9 is a good starting point. The script needs to be enhanced in the following
manner: it should accept the user ID and password as arguments, it should create the
appropriate authorization header, and it should format the output. The bold portions
of Listing 13-1 illustrate the enhancements made to GetRestClient.groovy to create
GetAllTodos.groovy, the enhanced RESTful web service client.

Listing 13-1. GetAllTodos.groovy

01 import groovy.util.XmlSlurper

02

03 if (args.size() < 2)

04 {

CHAPTER 13 ■ ALTERNATIVE CLIENTS 369

10450_ch13.qxd 5/27/08 11:18 PM Page 369

05 //USAGE()

06 println """Usage: groovy GetAllTodos userid password"""

07 System.exit(1)

08 }

09

10 // Define some thing we will need.

11 def userid = args[0]

12 def password = args[1]

13 def url = "http://localhost:8080/collab-todo/rest/todo"

14 def slurper = new XmlSlurper()

15

16 println "\nGetting All Todos for ${userid}:"

17

18 def conn = new URL(url).openConnection()

19 conn.requestMethod = "GET"

20 conn.doOutput = true

21

22 if (userid && password) {

23 conn.setRequestProperty("Authorization", "Basic ${userid}:${password}")

24 }

25

26 if (conn.responseCode == conn.HTTP_OK) {

27 def response

28

29 conn.inputStream.withStream {

30 response = slurper.parse(it)

31 }

32 println "\nNo. of Todo Records: ${response.todo.size()}"

33 response.todo.each {

34 println "-------------------------------------"

35 println "Id: ${it.@id}"

36 println "Name: $it.name"

37 println "Note: $it.note"

38 println "Owner: ${it.owner.@id}"

39 println "Create Date: $it.createDate"

40 println "Completed Date: $it.completedDate"

41 println "Due Date: $it.dueDate"

42 println "Priority: $it.priority"

43 println "Status: $it.status"

44 }

45 }

46

47 conn.disconnect()

CHAPTER 13 ■ ALTERNATIVE CLIENTS370

10450_ch13.qxd 5/27/08 11:18 PM Page 370

http://localhost:8080/collab-todo/rest/todo
mailto:it.@id
mailto:owner.@id

Lines 3–8 verify that the script is invoked with two arguments and displays a usage
message if two arguments are not provided. Lines 11 and 12 assign the arguments to two
local variables: userid and password. Lines 22–24 set up the connection/requests authori-
zation header using userid and password. Line 26 accesses the web service and checks that
it gave a valid response. If the response is valid, the script moves to lines 29–31, which read
the XML response into a local variable using the XmlSlurper. Lines 32–44 iterate through each
Todo item and display the item’s content.

■Note You can learn more about the XmlSlurper at http://groovy.codehaus.org/
Reading+XML+using+Groovy%27s+XmlSlurper, or check out the Groovy API documents in the html
directory under GROOVY_HOME.

OTHER WAYS TO READ XML

As you might have guessed, you can read XML several ways using Groovy. This chapter uses Groovy’s
XmlSlurper to read XML. In addition to using any of the great Java XML libraries, you can also use
Groovy’s XmlParser7 or DOMCategory.8 You can find more information on processing XML with Groovy
at http://groovy.codehaus.org/Processing+XML.

Run the script by typing this command from a command line:

> groovy GetAllTodos user1 password

Assuming you did everything correctly, the output should look similar to this:

Getting All Todos:

No. of Todo Records: 2

Id: 3

Name: User1 Todo 1

Note: User1 Todo 1 Note

Owner: 2

Create Date: 2008-01-13 11:06:00.0

CHAPTER 13 ■ ALTERNATIVE CLIENTS 371

7. http://groovy.codehaus.org/Reading+XML+using+Groovy%27s+XmlParser

8. http://groovy.codehaus.org/Reading+XML+using+Groovy%27s+DOMCategory

10450_ch13.qxd 5/27/08 11:18 PM Page 371

http://groovy.codehaus.org
http://groovy.codehaus.org/Processing+XML
http://groovy.codehaus.org/Reading+XML+using+Groovy%27s+XmlParser
http://groovy.codehaus.org/Reading+XML+using+Groovy%27s+DOMCategory

Completed Date: 2008-01-13 11:06:00.0

Due Date: 2008-01-13 11:06:00.0

Priority: 1

Status: 1

Id: 4

Name: User1 Todo 2

Note: User 1 Todo 2 Note

Owner: 2

Create Date: 2008-01-13 11:06:00.0

Completed Date: 2008-01-13 11:06:00.0

Due Date: 2008-01-13 11:06:00.0

Priority: 2

Status: 1

This technique contains two security issues:

• The users type in their user ID and password at the command line, so they may be
exposed in a process list: A better approach is to prompt the script for the informa-
tion. The upcoming Listing 13-2 uses this approach.

• The request is transmitted to the web service in clear text: Any person who might
be sniffing the web service port would see the authorization header that contains
the user ID and password. A solution to this issue is to run the service under SSL
(HTTPS). See Chapter 12 for more information on deploying and running with
HTTPS.

Creating To-Do Items

Now that you know how to read to-do items, it’s time to move on to creating new
items. The process is the reverse of reading. You will make some enhancements to
the PutRestClient.groovy script from Chapter 9, then you will prompt for the user
ID, password, and to-do information. The bold portions of Listing 13-2 illustrate
the enhancements made to PutRestClient.groovy to create CreateTodo.groovy, the
enhanced RESTful web service client.

Listing 13-2. CreateTodo.groovy

01 import jline.ConsoleReader

02 import groovy.util.XmlSlurper

03

04 ConsoleReader cr = new jline.ConsoleReader()

CHAPTER 13 ■ ALTERNATIVE CLIENTS372

10450_ch13.qxd 5/27/08 11:18 PM Page 372

05

06 // Prompt for UserID and Password

07 print "User id : "

08 def userid = cr.readLine();

09 print "Password: "

10 def password = cr.readLine(new Character('*' as char));

11

12 def url = "http://localhost:8080/collab-todo/rest/todo"

13 def userInfoUrl = "http://localhost:8080/collab-todo/userInfo?rest=rest"

14 def slurper = new XmlSlurper()

15

16 // Get the User Info

17 // It will be used later

18 def user_id

19 def user_firstName

20 def user_lastName

21 def conn = new URL(userInfoUrl).openConnection()

22 conn.requestMethod = "GET"

23 conn.doOutput = true

24

25 if (userid && password) {

26 conn.setRequestProperty("Authorization", "Basic ${userid}:${password}")

27 }

28

29 if (conn.responseCode == conn.HTTP_OK) {

30 def response

31

32 conn.inputStream.withStream {

33 response = slurper.parse(it)

34 user_id = response.@id

35 user_firstName = response.firstName

36 user_lastName = response.lastName

37 }

38 }

39

40 // Create the to-do

41 conn = new URL(url).openConnection()

42 conn.requestMethod = "PUT"

43 conn.doOutput = true

44 conn.doInput = true

45

46 if (userid && password) {

CHAPTER 13 ■ ALTERNATIVE CLIENTS 373

10450_ch13.qxd 5/27/08 11:18 PM Page 373

http://localhost:8080/collab-todo/rest/todo
http://localhost:8080/collab-todo/userInfo?rest=rest
mailto:response.@id

47 conn.setRequestProperty("Authorization", "Basic ${userid}:${password}")

48 }

49

50 // Values for CreatedDate

51 Calendar createDate = Calendar.getInstance();

52 def cdYear = createDate.get(Calendar.YEAR)

53 def cdMonth = createDate.get(Calendar.MONTH) + 1

54 def cdDay = createDate.get(Calendar.DAY_OF_MONTH)

55 def cdHour = createDate.get(Calendar.HOUR_OF_DAY)

56 def cdMin = createDate.get(Calendar.MINUTE)

57

58 // Prompt for Todo Information

59 println ""

60 print "Name: "

61 def name = cr.readLine();

62 print "Priority: "

63 def priority = cr.readLine();

64 print "Status: "

65 def status = cr.readLine();

66 print "Note: "

67 def note = cr.readLine();

68

69 def data = "name=${name}¬e=${note}&owner.id=${user_id}\

70 &priority=${priority}&status=${status}&createDate=struct\

71 &createDate_hour=${cdHour}&createDate_month=${cdMonth}\

72 &createDate_minute=${cdMin}&createDate_year=${cdYear}\

73 &createDate_day=${cdDay}"

74

75 conn.outputStream.withWriter {out ->

76 out.write(data)

77 out.flush()

78 }

79

80 if (conn.responseCode == conn.HTTP_OK) {

81 input = conn.inputStream

82 input.eachLine {

83 println it

84 }

85 }

86 conn.disconnect()

CHAPTER 13 ■ ALTERNATIVE CLIENTS374

10450_ch13.qxd 5/27/08 11:18 PM Page 374

Line 4 creates a JLine ConsoleReader. JLine9 is a nice little utility that is included in the
full Groovy install. You use ConsoleReader to read information that the user inputs. Lines
6–10 prompt for and read userid and password. Take a close look at line 10 and notice '*';
this is the echo character for the user input. Changing the echo character prevents the
user’s password from being displayed on the console.

Lines 21–38 call the user information web service to retrieve the user information
that you’ll use to create a new to-do item. The user information web service is a simple
web service that we created to facilitate this process. For the sake of brevity, we won’t go
into the details of the web service; it is included in the code samples for this chapter in
the Source Code/Download area of the Apress web site (http://www.apress.com).

Lines 50–56 create a Calendar object so that you can set the created date to the cur-
rent date and time. Lines 58–67 prompt for the to-do information. Lines 69–73 use string
interpolation to insert the values entered by the user into the query string that is sent to
the web service on line 76.

Run the script by typing groovy CreateTodo from a command line. You will be
prompted for a user ID and password. Next, fill in the to-do item name, the priority,
the status, and a note. You can verify that the request to create to-dos succeeded by
rerunning the GetAllTodos script.

Deleting To-Do Items

If you can create to-do items, then it only makes sense that you should be able to delete them
as well. Once again, you will leverage the work you did in Chapter 9, with one minor enhance-
ment. You will prompt for the user ID, password, and to-do item ID to be deleted. The bold
portions of Listing 13-3 illustrate the enhancements made to DeleteRestClient.groovy to
create DeleteTodo.groovy, the enhanced RESTful web service client.

Listing 13-3. DeleteTodo.groovy

01 import jline.ConsoleReader

02

03 ConsoleReader cr = new jline.ConsoleReader()

04

05 // Prompt for UserID and Password

06 def userid = cr.readLine("User id : ")

07 def password = cr.readLine("Password: ", new Character('*'as char))

08 println ""

09 def todo_id = cr.readLine("Todo Item id: ")

CHAPTER 13 ■ ALTERNATIVE CLIENTS 375

9. http://jline.sourceforge.net/

10450_ch13.qxd 5/27/08 11:18 PM Page 375

http://www.apress.com
http://jline.sourceforge.net

10

11 def url = "http://localhost:8080/collab-todo/rest/todo/${todo_id}"

12 def conn = new URL(url).openConnection()

13 conn.requestMethod = "DELETE"

14 conn.doOutput = true

15

16 if (userid && password) {

17 conn.setRequestProperty("Authorization", "Basic ${userid}:${password}")

18 }

19

20 if (conn.responseCode == conn.HTTP_OK) {

21 input = conn.inputStream

22 input.eachLine {

23 println it

24 }

25 }

26

27 conn.disconnect()

Lines 5–9 prompt for the user ID, password, and to-do item ID to be deleted. Line 11
adds the to-do item ID to the URL. The only other part of this script that wasn’t in the
Chapter 9 version is the addition of the authorization header.

Run the script by typing groovy DeleteTodo from a command line. You will be prompted
for the user ID, password, and to-do item ID to be deleted. You can verify that the to-do
item was deleted by rerunning the GetAllTodos script.

Updating To-Do Items

Last, but not least, let’s update an existing to-do item. This script is a pretty significant update
to the Chapter 9 version, PostRestClient.groovy. The enhancements include prompting for
the user ID, password, and to-do item ID to be updated; retrieving the current values for the
to-do item to be updated; and prompting the user for the changes. The bold portions of
Listing 13-4 illustrate the enhancements made to PostRestClient.groovy to create UpdateTodo.groovy,
the enhanced RESTful web service client.

Listing 13-4. UpdateTodo.groovy

01 import jline.ConsoleReader

02

03 ConsoleReader cr = new jline.ConsoleReader()

04

05 // Prompt for UserID and Password

CHAPTER 13 ■ ALTERNATIVE CLIENTS376

10450_ch13.qxd 5/27/08 11:18 PM Page 376

http://localhost:8080/collab-todo/rest/todo

06 def userid = cr.readLine("User id : ")

07 def password = cr.readLine("Password: ", new Character('*' as char))

08 println ""

09 def todo_id = cr.readLine("Todo Item id: ")

10

11 // Things that can be updated

12 def id

13 def name

14 def priority

15 def status

16

17 // Get the current values

18 def url = "http://localhost:8080/collab-todo/rest/todo/${todo_id}"

19 def slurper = new XmlSlurper()

20

21 def conn = new URL(url).openConnection()

22 conn.requestMethod = "GET"

23 conn.doOutput = true

24 conn.setRequestProperty("Authorization", "Basic ${userid}:${password}")

25

26 if (conn.responseCode == conn.HTTP_OK) {

27 def response

28

29 conn.inputStream.withStream {

30 response = slurper.parse(it)

31 }

32 response.each {

33 id = it.@id

34 name = it.name

35 priority = it.priority

36 status = it.status

37 }

38 }

39

40 conn.disconnect()

41

42 // Prompt for Changes with current values

43 def tname = cr.readLine("Name (${name}): ")

44 name = tname ? tname : name

45 def tstatus = cr.readLine("Status (${status}): ")

46 status = tstatus ? tstatus : status

47 def tpriority = cr.readLine("Priority (${priority}): ")

48 priority = tpriority ? tpriority : priority

CHAPTER 13 ■ ALTERNATIVE CLIENTS 377

10450_ch13.qxd 5/27/08 11:18 PM Page 377

http://localhost:8080/collab-todo/rest/todo
mailto:it.@id

49

50 // Update the Todo

51 url = "http://localhost:8080/collab-todo/rest/todo"

52 conn = new URL(url).openConnection()

53 requestMethod = "POST"

54 conn.doOutput = true

55 conn.doInput = true

56

57 def data = "id=${id}&name=${name}&status=${status}&priority=${priority}"

58

59 conn.outputStream.withWriter { out ->

60 out.write(data)

61 out.flush()

62 }

63

64 if (conn.responseCode == conn.HTTP_OK) {

65 input = conn.inputStream

66 input.eachLine {println it }

67 }

68 conn.disconnect()

Lines 1–40 should look very similar to GetAllTodos.groovy. Lines 32–37 process the XML
that is returned. In this case, the XML is the current to-do. The XML values are saved to
local variables for use by lines 42–48, which prompt the user for changes to the to-do
information. The prompt contains the current value. If the user presses Enter without
making a change, the script will use the current value. The last point of interest is line 57,
where the values are added to the query string.

To run the script, type groovy UpdateTodo from a command line. You will be prompted
for the user ID, password, and to-do item ID to be updated. Next, you will be given the
opportunity update the to-do’s name, status, and priority. The current value of each field
is displayed in the prompt. If you would like to keep the current value, just press Enter,
and the current value will be retained. You can rerun the GetAllTodos script to verify that
your updated was processed.

Command-Line Script Summary

This section illustrated the usage of command-line scripts to interact with the web service
created in Chapter 9. You took the sample client scripts from Chapter 9 and enhanced them
to be more usable. The enhancements included prompting for the user ID and password,
creating an authorization header, and formatting the output.

The result is a simple, fast, command-line script to create, read, update, and delete
to-do items in the Collab-Todo application. In the next section, you will take what you
learned and create a rich Groovy client using the Groovy Swing facilities.

CHAPTER 13 ■ ALTERNATIVE CLIENTS378

10450_ch13.qxd 5/27/08 11:18 PM Page 378

http://localhost:8080/collab-todo/rest/todo

Rich Groovy Client
Creating a rich client with Groovy and Swing is a very wide and deep topic. There is no
way we can cover it in one chapter. The goal in this section is to give you a small sample
of the types of things possible using Groovy, SwingXBuilder, and a couple of popular
open source Java libraries (SwingX, Glazed Lists, and JGoodies Forms). You will create
a simple Collab-Todo application that leverages the RESTful web services.

Overview

The application will allow usersto log in, display their to-do items, add new to-do items,
update to-do items, and delete to-do items. When the application is complete, it will look
like Figure 13-2.

Figure 13-2. Collab-Todo application

CHAPTER 13 ■ ALTERNATIVE CLIENTS 379

10450_ch13.qxd 5/27/08 11:18 PM Page 379

■Note The application leverages open source libraries; we will not be going into a detailed discussion
about the code and the proper usage of the libraries. You can find tutorials and documentation about the
libraries on their respective web sites. The complete source for the application is included in the Source
Code/Download area of the Apress web site (http://www.apress.com).

Options, Alternatives, and Considerations

You’ll need to make a lot of decisions when building a client application. These are just a
few of the core questions you’ll need to answer:

• What presentation technology should you use?

• What presentation components and frameworks should you use?

• How should the application code be structured?

Choosing the Appropriate Presentation Technology

Groovy can do anything Java can do. If you think about the goal of developing the user
interface from a Java perspective, you have two options: Swing or Standard Widget Toolkit
(SWT). Either choice would work. You could just start coding Groovy and use Swing or
SWT the same way you would in a normal Java program. However, if you’ve ever coded
Swing or SWT, you probably aren’t too excited right now.

Groovy uses builders10 to make the job easier. It has both the Swing family of builders
(SwingBuilder,11 SwingXBuilder, and JideBuilder12) and the SWT builder (SwtBuilder13). Using
Groovy and a builder will make the job of creating a client application much easier.

In general, Java developers are more likely to be familiar with Swing than SWT. There-
fore, we’ll show you how to use Swing as the presentation technology and SwingXBuilder to
make it easier. SwingXBuilder extends SwingBuilder and provides access to all of the power
of SwingBuilder, plus the Swing components from the folks at SwingLabs.14

Choosing the Presentation Components and Frameworks

Take a look at Figure 13-2. It shows a frame with a menu bar, toolbar, status bar, sortable
table, labels, and text fields. When you use the system, you’ll also see a login dialog and

CHAPTER 13 ■ ALTERNATIVE CLIENTS380

10. Refer to Chapter 3 for a review of builders.

11. http://groovy.codehaus.org/Swing+Builder

12. http://groovy.codehaus.org/JideBuilder

13. http://groovy.codehaus.org/GroovySWT

14. http://www.swinglabs.org

10450_ch13.qxd 5/27/08 11:18 PM Page 380

http://www.apress.com
http://groovy.codehaus.org/Swing+Builder
http://groovy.codehaus.org/JideBuilder
http://groovy.codehaus.org/GroovySWT
http://www.swinglabs.org

a tips dialog. You could code all of this by hand using plain Swing, but you don’t need to.
Instead, you can leverage some open source components and frameworks to make your
job easier.

SwingXBuilder and the SwingLabs components are a good choice for the login dialog,
tips dialog, and status bar. The Glazed Lists table component can help you make a great
sortable table, and JGoodies Forms helps you arrange the components on the frame.

■Note Check out both JideBuilder and JIDE Common Layer,15 which has some really good UI compo-
nents. In addition, if you’re into 2-D graphics, take a look at GraphicsBuilder.16 JideBuilder and
GraphicsBuilder are both courtesy of Andres Almiray.17

Structuring the Application

There are as many opinions about the best way to structure an application as there are Java
developers. Many times, the features and characteristics of a language lead to some struc-
tures working better than others. However, it’s important to remember that all approaches
have pros and cons. We really don’t have time to investigate all of the alternatives, so let’s
stand on the shoulders of giants and follow in their footsteps by adopting the approach the
SwingX team used to organize the SwingX version of Groovy Console.

If you investigate the SwingXBuilder code base, you will discover a SwingX implementa-
tion of the Groovy Console. It is a port/refactor of the Groovy Console from the SwingBuilder
implementation to the SwingXBuilder implementation. You can find the SwingXBuilder Groovy
Console source code in the demos/console directory of the SwingXBuilder source code. James
Williams,18 the creator of SwingXBuilder, did a nice job organizing the SwingXBuilder Groovy
Console code. Well-organized code makes writing an application much easier. We will use
the same code organization for the Collab-Todo application.

Figure 13-3 provides a high-level overview of the Collab-Todo application’s structure.

CHAPTER 13 ■ ALTERNATIVE CLIENTS 381

15. https://jide-oss.dev.java.net/

16. http://groovy.codehaus.org/GraphicsBuilder

17. http://www.jroller.com/aalmiray/

18. http://www.jameswilliams.be

10450_ch13.qxd 5/27/08 11:18 PM Page 381

https://jide-oss.dev.java.net
http://groovy.codehaus.org/GraphicsBuilder
http://www.jroller.com/aalmiray
http://www.jameswilliams.be

Figure 13-3. Structure of the Collab-Todo application

While the Controller and the BasicContentPane are the most important modules, a brief
overview of all the modules is in order.

Main

The Main module is the entry point into the application. It creates the Controller and invokes
the Controller’s run closure.

Controller

The Controller module is exactly what it sounds like. It is the “C” of MVC. It is responsible
for initiating the construction of the view and defining the application’s actions and com-
mands. It contains the application logic.

Actions

The Actions module defines the actions used within the application. The actions are tied
to closures located in the Controller.

Main

Controller

Actions

Views

BasicMenuBar

BasicContentPane

BasicToolBar

BasicStatusBar

HTTP Utilities
Get
Put
Post

Delete

RestController

CHAPTER 13 ■ ALTERNATIVE CLIENTS382

10450_ch13.qxd 5/27/08 11:18 PM Page 382

Views

The Views module is responsible for some simple view definition information and initiat-
ing the construction of the BasicMenuBar, the BasicToolBar, the BasicContentPane, and the
BasicStatusBar. It represents the “V” of MVC.

BasicMenuBar

The BasicMenuBar contains the menus and menu items, and it ties the menu items to the
appropriate actions.

BasicToolBar

The BasicToolBar is a graphical representation of important or frequently used actions. In
the case of the Collab-Todo application, the only entry on the toolbar is the login button.

BasicContentPane

The BasicContentPane is the major graphical component of the application. It contains the
to-do summary table and the to-do details. It also contains buttons that allow the user to
add, save, and delete to-dos.

BasicStatusBar

The BasicStatusBar is a message area at the bottom of the screen.

HTTP Utilities

The HTTP utilities are helper classes to assist with the web service interactions. The utili-
ties are used to manage the model (the “M” part of MVC).

RestController

The RestController represents the web services from Chapter 9.

Builder Overview

A Swing user interface can be thought of as a composite or a tree of graphical components.
If you have programmed with Swing, you’re undoubtedly familiar with the never-ending
pattern of adding a component to its parent. It can be a complex, verbose mess. Groovy
tackles the mess using builders.

CHAPTER 13 ■ ALTERNATIVE CLIENTS 383

10450_ch13.qxd 5/27/08 11:18 PM Page 383

If you have spent any time with Groovy, you have probably seen or used MarkupBuilder
to construct an HTML or XML document. Builders can be used equally as well to build a
Swing UI.

The easiest way to gain appreciation for SwingXBuilder is to see an example. Listing 13-5
shows how to use SwingXBuilder to create a simple user interface.

Listing 13-5. Creating a Simple UI Using SwingXBuilder

package com.apress.bgg.ui

import groovy.swing.SwingXBuilder

import static javax.swing.WindowConstants.EXIT_ON_CLOSE

import javax.swing.*

class SimpleUI {

static void main(args) {

def simpleUI = new SimpleUI()

simpleUI.run()

}

def swing

def count = 0

def run = {

swing = new SwingXBuilder()

swing.lookAndFeel('system')

// create the actions

swing.action(id: 'exitAction',

name: 'Exit',

closure: this.&exit,

mnemonic: 'x',

accelerator: 'F4',

shortDescription: 'Exit SimpleUI'

)

swing.action(id: 'aboutAction',

name: 'About',

closure: this.&showAbout,

mnemonic: 'A',

CHAPTER 13 ■ ALTERNATIVE CLIENTS384

10450_ch13.qxd 5/27/08 11:18 PM Page 384

accelerator: 'F1',

shortDescription: 'Find out about SimpleUI'

)

swing.action(id: 'clickAction',

name: 'Click',

closure: this.&click,

shortDescription: 'Increment the Click Count'

)

// Define the Frame

swing.frame(id:'simpleUIFrame', title: 'SimpleUI',

location: [100,100],

defaultCloseOperation: EXIT_ON_CLOSE

) {

// Define the Menubar

menuBar {

menu(text: 'File', mnemonic: 'F') {

menuItem(exitAction)

}

glue()

menu(text: 'Help', mnemonic: 'H') {

menuItem(aboutAction)

}

}

// Define some stuff

button(id:'clickButton', text:"Click Me", action: clickAction)

// INSERT MORE STUFF HERE

}

swing.simpleUIFrame.pack()

swing.simpleUIFrame.show()

}

void click(event) {

count++

swing.clickButton.text = "Clicked ${count} time(s)."

}

CHAPTER 13 ■ ALTERNATIVE CLIENTS 385

10450_ch13.qxd 5/27/08 11:18 PM Page 385

void showAbout(event) {

JOptionPane.showMessageDialog(swing.simpleUIFrame,

'''This is the SimpleUI Application''')

}

void exit(event) {

System.exit(0)

}

}

Executing the SimpleUI application creates the user interface shown in Figure 13-4.

Figure 13-4. The SimpleUI application

The SimpleUI application creates a Swing user interface that features a menu bar that
contains a File menu, a Help menu, and a button in the content area. The text on the but-
ton changes every time the user clicks it. When the program starts, it invokes the run
closure to build the UI. The run closure sets up the builder, then uses the builder to create
three actions that will be used within the UI. Then the closure uses the builder to create
the frame. The frame contains a menu bar, which contains the File and Help menus. Each
of the menus contains menu items that reference the previously created actions. The frame
also contains a button labeled Click Me, and a reference to the clickAction action.

If you take a closer look at the actions, you will notice that a parameter named closure
was passed to the builder when creating the actions. In the case of clickAction, the closure
to be executed is click. The click closure increments a counter and sets the button’s text.

Now that you have a basic feel for using SwingXBuilder to create a user interface, we
will return to the Collab-Todo application. We will focus on the Controller module, creat-
ing the view, and the HTTP utilities.

Creating the Main Module

All applications have a starting point, and Groovy Swing applications are no exception.
Listing 13-6 illustrates the Collab-Todo application’s startup.

CHAPTER 13 ■ ALTERNATIVE CLIENTS386

10450_ch13.qxd 5/27/08 11:18 PM Page 386

Listing 13-6. The Main Routine

package com.apress.bgg.ui

import org.codehaus.groovy.runtime.StackTraceUtils

import com.apress.bgg.ui.Controller

class Main {

static void main(args) {

. . .

def controller = new Controller()

controller.run()

}

}

As you can see, Controller performs the real startup and initialization. Main instanti-
ates the Controller and invokes the run closure.

Creating the Controller Module

Just as in a web application, the Controller is the heart and mind of the application and cre-
ates the actions and views. It contains closures that are invoked by the actions. Listing 13-7 is
a high-level view of the Controller.

Listing 13-7. High-Level View of the Controller

package com.apress.bgg.ui

import groovy.swing.SwingXBuilder

import groovy.util.slurpersupport.GPathResult

import java.awt.Component

import java.awt.Cursor

import javax.swing.*

import java.util.prefs.Preferences

import org.jdesktop.swingx.JXLoginPane

import org.jdesktop.swingx.JXTipOfTheDay

import org.jdesktop.swingx.tips.TipOfTheDayModel

import org.jdesktop.swingx.tips.TipLoader

CHAPTER 13 ■ ALTERNATIVE CLIENTS 387

10450_ch13.qxd 5/27/08 11:18 PM Page 387

import ca.odell.glazedlists.*

import ca.odell.glazedlists.gui.*

import ca.odell.glazedlists.swing.*

import com.apress.bgg.services.CTLoginService

import com.apress.bgg.http.utils.Get

import com.apress.bgg.http.utils.Delete

import com.apress.bgg.http.utils.Post

import com.apress.bgg.http.utils.Put

class Controller {

. . .

def run = {

todoEventList = new BasicEventList()

swing = new SwingXBuilder()

// adjust the look and feel aspects.

swing.lookAndFeel('system')

// add controller to the SwingBuilder bindings

swing.controller = controller

// create the actions

swing.build(Actions)

// create the view

swing.build(Views)

swing.consoleFrame.pack()

swing.consoleFrame.show()

}

void exit(event) { System.exit(0) }

void doTips() { . . . }

void showTips(event) { . . . }

void showAbout(event) { . . . }

void showLogin(event) { . . .

void fullStackTraces(EventObject evt) { . . .}

void showToolbar(EventObject evt) { . . . }

CHAPTER 13 ■ ALTERNATIVE CLIENTS388

10450_ch13.qxd 5/27/08 11:18 PM Page 388

def status = { message -> swing.status.text = "$message" }

void loadData(){ . . . }

void deleteTodo(event) { . . .}

void saveTodo(event) { . . . }

void addTodo(event) { . . . }

}

When the application starts, the Main module instantiates the Controller and invokes
the Controller’s run closure. The run closure uses SwingXBuilder to construct the UI and
then puts it on the screen. Everything else in the Controller is application logic that is tied
to actions.

The nonbold closures are standard code that you would expect to see for handling the
login dialog, displaying tips, displaying the About dialog, and handling other miscellaneous
actions. The loadData, deleteTodo, and saveTodo closures interact with the web service using
the HTTP utilities, which we’ll cover shortly.

When the user logs in, the application invokes loadData to retrieve the user’s to-do
items. Listing 13-8 illustrates using the HTTP utility Get to retrieve the user’s information.

Listing 13-8. Loading Data from the RESTful Web Service

void loadData(){

status "Loading Data"

def get = new Get(url: APP_URL,

userName: loginService.name,

password: new String(loginService.password))

def todos = new XmlSlurper().parseText(get.text)

todoEventList.clear()

todoEventList.addAll(todos.todo.list())

status "Finished Loading Data"

}

The closure puts a message on the status bar, creates the Get HTTP utility to interact
with the web services, and parses the resulting XML with XMLSlurper. The results are then
added to the todo collection, which notifies the application of new data using change events
so that the screen can be updated. Finally, the status message is updated.

CHAPTER 13 ■ ALTERNATIVE CLIENTS 389

10450_ch13.qxd 5/27/08 11:18 PM Page 389

The user can delete to-do items by selecting the to-do from the summary table and
then selecting the Delete button. The Delete button invokes deleteAction, which runs
deleteTodo. Listing 13-9 illustrates the implementation of the delete logic.

Listing 13-9. Deleting a To-Do

void deleteTodo(event) {

def delete = new Delete(url: APP_URL+"/${selectedTodo().@id}",

userName: loginService.name,

password: new String(loginService.password))

delete.text

loadData()

}

The deleteTodo closure creates a Delete HTTP utility to interact with the web services. It
then invokes the web services and repopulates the user’s information. If you recall, when
using web services to delete information, the ID of the item to be deleted is appended to the
URL, and the request method is set to DELETE. The bold code shown in Listing 13-9 retrieves
the ID of the currently selected to-do using a helper method.

The user can add a new to-do item by clicking the Add button. This adds a blank to-do
to the summary table. The user selects the blank to-do from the summary table and then
enters the to-do details. Next, the user clicks the Save button to save the new to-do. The
Save button invokes saveAction, which runs saveTodo. Listing 13-10 illustrates the imple-
mentation of the save logic.

Listing 13-10. Saving a To-Do

void saveTodo(event) {

selectedTodo().name = swing.nameTextField?.text

selectedTodo().priority = swing.priorityTextField?.text

selectedTodo().status = swing.statusTextField?.text

selectedTodo().completedDate = swing.completedTextField?.text

selectedTodo().createDate = swing.createTextField?.text

selectedTodo().dueDate = swing.dueTextField?.text

selectedTodo().note = swing.noteTextField?.text

// Save or Update?

// if don't have an ID, then save else update

if (selectedTodo().@id) {

def put = new Put(url: APP_URL,

userName: loginService.name,

password: new String(loginService.password))

CHAPTER 13 ■ ALTERNATIVE CLIENTS390

10450_ch13.qxd 5/27/08 11:18 PM Page 390

mailto:selectedTodo().@id
mailto:selectedTodo().@id

put.queryString.add("name", selectedTodo().name)

put.queryString.add("priority", selectedTodo().priority)

put.queryString.add("status", selectedTodo().status)

put.queryString.add("note", selectedTodo().note)

// Construct a create date

// Values for createDate

Calendar createDate = Calendar.getInstance();

def cdYear = createDate.get(Calendar.YEAR)

def cdMonth = createDate.get(Calendar.MONTH)+1

def cdDay = createDate.get(Calendar.DAY_OF_MONTH)

def cdHour = createDate.get(Calendar.HOUR_OF_DAY)

def cdMin = createDate.get(Calendar.MINUTE)

put.queryString.add("createDate",

"struct&createDate_hour=${cdHour}&createDate_month=${cdMonth}&

createDate_minute=${cdMin}&createDate_year=${cdYear}&

createDate_day=${cdDay}")

put.content = content

put.text

} else {

// Update

. . . .

}

loadData()

}

The saveTodo closure saves the screen values of the to-do details to local variables, and
it populates an XML string using the values. Then, the closure determines if the intent is to
save a new to-do or update an existing one. If the currently selected to-do doesn’t have an
ID, then the closure saves it.

Next, you create a Put HTTP utility to interact with web service, populate the request
with the XML string and a create date, and invoke the service. Finally, you use the loadData
closure to repopulate the user’s information.

In this section, you’ve learned about the more important portions of the Controller.
You have seen how to use SwingXBuilder to construct the view components and how the
Controller interacts with the web services. The next step is to look deeper into the view
creation.

CHAPTER 13 ■ ALTERNATIVE CLIENTS 391

10450_ch13.qxd 5/27/08 11:18 PM Page 391

Creating the View

Most IT people like to think that UI programming is easy. The truth of the matter is that it
isn’t as easy as everyone thinks it is. Creating a good, well-organized UI can be tough work
and require lots of code. However, the Swing and SwingX builders and some open source
Swing component libraries make the job much easier.

The Controller creates SwingXBuilder, and it also creates actions and views by pass-
ing Actions and Views scripts to the builder. You accomplish this by using the builder’s
build closure. The build closure allows you to pass a script as a closure, and it allows the
code to be divided into separate modules, resulting in a code base that is easier to manage.
If you take a look at Actions.groovy and Views.groovy, located in the com\apress\bgg\ui
directory, you will see that they are scripts. You saw how to create actions in the SimpleUI
application, so now let’s focus on creating the views. Listing 13-11 is a partial listing of
Views script.

Listing 13-11. The Views Script

package com.apress.bgg.ui

. . .

frame(

title: 'Collab Todo',

location: [100,100],

iconImage: imageIcon(Controller.ICON_PATH).image,

defaultCloseOperation: DO_NOTHING_ON_CLOSE,

id:'consoleFrame'

) {

build(menuBarClass)

build(toolBarClass)

build(contentPaneClass)

build(statusBarClass)

The script creates and configures a frame and then uses the builder’s build closure
to construct the menu bar, toolbar, content pane, and status bar. Now let’s take a look at
the content pane. The content pane is responsible for constructing the main portion of
the user interface. The content pane is composed of two parts: a summary table and the
details. Listing 13-12 is a partial listing of the script used to construct the content pane.

Listing 13-12. Constructing the Content Pane

01 package com.apress.bgg.ui.view

02 . . .

03 swing = controller.swing

CHAPTER 13 ■ ALTERNATIVE CLIENTS392

10450_ch13.qxd 5/27/08 11:18 PM Page 392

04

05 def selectedIndex = 0

06

07 // Create Sorted List for use by the table

08 EventList todoEventList = controller.todoEventList

09 SortedList sortedTodos = new SortedList(todoEventList,

10 { a, b -> b.name.text() <=> a.name.text() } as Comparator)

11

12 /*

13 * Helper method to get the current model/row

14 */

15 def selectedTodo = {

16 selectedIndex = swing.table.selectedRow

17 if(selectedIndex != -1){

18 selectedIndex = sortedTodos?.getSourceIndex(selectedIndex)

19 return todoEventList[selectedIndex]

20 }

21 }

22 controller.selectedTodo = selectedTodo

23

24 /*

25 * Define a Summary Table

26 */

27 def columnNames = ["Name","Priority","Status","Note"]

28 def summaryTable = scrollPane(){

29 table(id: 'table', model:

30 new EventTableModel(sortedTodos, [

31 getColumnCount: { return columnNames.size() },

32 getColumnName: { index ->

33 columnNames[index]

34 },

35 getColumnValue: { object, index ->

36 object."${columnNames[index].toLowerCase()}".text()

37 }] as TableFormat))

38 def tableSorter = new TableComparatorChooser(swing.table,

39 sortedTodos, AbstractTableComparatorChooser.SINGLE_COLUMN)

40 }

41

42 splitPane(id: 'splitPane', resizeWeight: 0.50F,

43 orientation: VERTICAL_SPLIT)

44 {

45

CHAPTER 13 ■ ALTERNATIVE CLIENTS 393

10450_ch13.qxd 5/27/08 11:18 PM Page 393

46 // Set up the Summary Table form using JGoodies Forms

47 FormLayout layout = new FormLayout(

48 "3dlu, 200dlu, 3dlu, pref, 3dlu, pref,3dlu", // columns

49 "3dlu, p, 3dlu, p, 3dlu, p, 3dlu"); // rows

50 CellConstraints cc2 = new CellConstraints()

51

52 panel(layout: layout){

53 widget(constraints: cc2.xyw(2,2,6), id: "summaryTable" , summaryTable)

54 widget(constraints: cc2.xy(6,4), id: "addButton",

55 new JButton(addAction))

56 }

57

58 // Set up the to-do details form using JGoodies Forms

59 FormLayout layout2 = new FormLayout(

60 "3dlu,right:pref, 3dlu, 90dlu, 3dlu, pref, 3dlu, pref, 3dlu", // columns

61 "3dlu, p, 3dlu, p, 3dlu, p, 3dlu, p, 3dlu, p, 3dlu, p, 3dlu, p, 3dlu,

62 p, 3dlu"); // rows

63 CellConstraints cc = new CellConstraints()

64

65 // Define the detail panel

66 // container(new FormDebugPanel(layout: layout2)){

67 panel(layout: layout2){

68 label(constraints: cc.xy(2,2), text: "Name:")

69 widget(constraints: cc.xyw(4,2,6),

70 new JTextField(columns:20), id: "nameTextField")

71 label(constraints: cc.xy(2,4), text: "Priority:")

72 widget(constraints: cc.xyw(4,4,6),

73 new JTextField(columns:20), id: "priorityTextField")

74 label(constraints: cc.xy(2,6), text: "Status:")

75 widget(constraints: cc.xyw(4,6,6),

76 new JTextField(columns:20), id: "statusTextField")

77 label(constraints: cc.xy(2,8), text: "Completed Date:")

78 widget(constraints: cc.xyw(4,8,6),

79 new JTextField(columns:20), id: "completedTextField")

80 label(constraints: cc.xy(2,10), text: "Create Date:")

81 widget(constraints: cc.xyw(4,10,6),

82 new JTextField(columns:20), id: "createTextField")

83 label(constraints: cc.xy(2,12), text: "Due Date:")

84 widget(constraints: cc.xyw(4,12,6),

85 new JTextField(columns:20), id: "dueTextField")

86 label(constraints: cc.xy(2,14), text: "Note:")

87 widget(constraints: cc.xyw(4,14,6),

CHAPTER 13 ■ ALTERNATIVE CLIENTS394

10450_ch13.qxd 5/27/08 11:18 PM Page 394

88 new JTextField(columns:40), id: "noteTextField")

89 widget(constraints: cc2.xy(6,16), id: "saveButton",

90 new JButton(saveAction))

91 widget(constraints: cc2.xy(8,16), id: "deleteButton",

92 new JButton(deleteAction))

93 }

94

95 // Data Bind the fields (view) to the model.

96 // sourceValue = model

97 // target = view

98 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

99 sourceValue: { selectedTodo()?.name },

100 target: swing.nameTextField, targetProperty: 'text')

101 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

102 sourceValue: { selectedTodo()?.priority },

103 target: swing.priorityTextField, targetProperty: 'text')

104 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

105 sourceValue: { selectedTodo()?.status },

106 target: swing.statusTextField, targetProperty: 'text')

107 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

108 sourceValue: { selectedTodo()?.completedDate },

109 target: swing.completedTextField, targetProperty: 'text')

110 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

111 sourceValue: { selectedTodo()?.createDate },

112 target: swing.createTextField, targetProperty: 'text')

113 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

114 sourceValue: { selectedTodo()?.dueDate },

115 target: swing.dueTextField, targetProperty: 'text')

116 bind(source:swing.table.selectionModel, sourceEvent:'valueChanged',

117 sourceValue: { selectedTodo()?.note },

118 target: swing.noteTextField, targetProperty: 'text')

119 }

The summary table is a sortable table that supports property change events. Creating
this functionality from scratch would be error prone and require a lot of work. Instead,
you can use the Glazed Lists table component to do the heavy lifting. Lines 7–10 get the
list of to-dos from the Controller and wrap them with a sortable list. Lines 27–39 create
the table inside of a scroll pane.

The next step is to lay out the top portion of the content pane and add the table and
the Add button. There are many different ways to lay out the form. For this example, we’re
using the JGoodies FormLayout component, which uses a grid approach to position the
components. Lines 47–50 define the grid. Line 52 creates a panel using the JGoodies

CHAPTER 13 ■ ALTERNATIVE CLIENTS 395

10450_ch13.qxd 5/27/08 11:18 PM Page 395

FormLayout manager. Lines 53 and 54 add the table and the Add button. Using the
JGoodies FormLayout manager requires using the builder’s widget closure to add the
table and the Add button at specified locations in the grid.

The to-do detail section of the content pane is a simple list of to-do details and the
Save and Delete buttons. Lines 58–62 define the layout grid for the detail area. Line 67
creates a panel using the detail layout manager. Lines 68–92 add the to-do details to the
panel as a label and a text field. As explained previously, using the JGoodies FormLayout
manager requires using the builder’s widget closure.

When the user selects a row from the summary table, the to-do item’s details should
be displayed in the details section. You could do this with an event listener, but a better,
more contemporary, approach is to use the builder’s data-binding abilities. Lines 98–118
define the data binding between the list of to-dos supporting the table and the to-do detail
fields. Whenever the user selects a row in the table, the table’s selection model changes
and fires off a valueChanged event. Whenever there is a valueChanged event on the table’s
selection model, the data binding populates the to-do detail fields with the to-do’s value
and displays the results.

We have barely scratched the surface of what is possible using Groovy, builders, and
open source component libraries. The important thing to remember is that “Groovy is
Java,” and that allows you to use any of the Java components and libraries you want to
build an application. The next section will explore the HTTP utilities that are used to inter-
act with the web service.

HTTP Utilities (Get, Put, Post, and Delete)

In the “Command-Line Scripts” section of this chapter, you learned how to create four
to-do scripts that correspond to the four HTTP request methods. These scripts worked
well, but they were specific to the task at hand—that is, interacting with the Collab-Todo
web service to maintain to-do items.

The Collab-Todo rich client also needs to interact with the web service. You can use
the same technique to create a couple of utility objects to perform the web service inter-
actions. Listing 13-13 illustrates the results of refactoring the GetAllTodos script into a Get

utility class.

Listing 13-13. HTTP Get Utility

package com.apress.bgg.http.utils

class Get{

String url

QueryString queryString = new QueryString()

String text

CHAPTER 13 ■ ALTERNATIVE CLIENTS396

10450_ch13.qxd 5/27/08 11:18 PM Page 396

def userName

def password

String getText(){

def response

def conn = new URL(toString()).openConnection()

conn.requestMethod = "GET"

conn.doOutput = true

if (userName && password) {

conn.setRequestProperty("Authorization", "Basic ${userName}:${password}")

}

if (conn.responseCode == conn.HTTP_OK) {

response = conn.content.text

} else {

response = "URL: " + this.toString() + "\n" +

"RESPONSE CODE: " + responseCode

}

conn.disconnect()

return response

}

String toString(){

return url + "?" + queryString.toString()

}

}

There isn’t anything special about the implementation, which is very similar to the
GetAllTodos script. It takes a URL, a username, a password, and, optionally, some query
parameters. Listing 13-14 illustrates its usage.

Listing 13-14. Usage of the Get Utility

def get = new Get(url: "http://localhost:8080/collab-todo/rest/todo",

userName: loginService.name,

password: new String(loginService.password))

def todos = new XmlSlurper().parseText(get.getText())

We won’t cover the details of the Put, Post, and Delete classes, but they follow the
same approach and are included in the Source Code/Download area of the Apress web
site (http://www.apress.com).

CHAPTER 13 ■ ALTERNATIVE CLIENTS 397

10450_ch13.qxd 5/27/08 11:18 PM Page 397

http://localhost:8080/collab-todo/rest/todo
http://www.apress.com

Summary
In this chapter, you created command-line scripts and a rich client written in Groovy to
interact with the Collab-Todo web services. This required you to download and install the
full Groovy installation, which provides access to additional Groovy modules and open
source libraries.

The command-line scripts leveraged Chapter 9’s web service client scripts, which you
extended to give the user the ability to log in to the web services and view all of the to-dos,
create a to-do, update a to-do, and delete a to-do.

Next, you turned your attention to creating a rich client application using SwingXBuilder,
JGoodies FormLayout manager, and the Glazed Lists table component. You started by writing
a simple application that counted button clicks. This simple application gave you a basic
understanding of SwingXBuilder and the process of creating the actions, menus, and buttons.
With this information, you were able to start constructing the user interface portion of the
application.

You started building the application by creating a Controller that was responsible for
building the view, executing the application logic, and interacting with the web services.
The Controller delegated the construction of the view to the Views script, which used
SwingXBuilder to build the menus, toolbar, content pane, and status bar. The content pane
was the main focus. The content pane script created the summary table, the detail fields,
and the Add, Delete, and Save buttons. You used the JGoodies FormLayout manager to
position these items on the screen.

Finally, you interacted with the Collab-Todo web service. You took what you learned
from creating the command-line scripts to create a couple of HTTP utility classes to per-
form the web service calls. You now have a rich client application to maintain your to-dos.

The purpose of this chapter was to help you see that Groovy and Grails aren’t just web
application frameworks. Our goal was to give you a sample of what is possible. You are only
limited by your imagination.

CHAPTER 13 ■ ALTERNATIVE CLIENTS398

10450_ch13.qxd 5/27/08 11:18 PM Page 398

■Numbers and symbols
404 error, 124
{} (curly braces), 24
.@ (field operator), 43–44
= (find operator), 36–37
== (match operator), 36, 38
.& (method closure operator), 44–45
? operator, 300
?. (safe dereference operator), 157
*. (spread operator), 41–42

■A
Abstract Window Toolkit (AWT), 315
access authentication, 216
access control, 218–221

filters, 231–233
permissions, 219, 237–238, 241
role-based, 219, 241
rule-based, 219
session validation, 219
user-level, 219

Acegi plug-in, 246–255
domain classes, 248–250
domain customization, 251, 253
domain data, 250–251
installation, 247–248
tag libraries, 254–255
usage, 253–255

AcegiConfig.groovy file, 251, 253
$action, 300
action attribute, of report tag, 325
action interceptors, creating audit log

using, 157–159
actions, as redirection mechanisms, 124
Actions module, 382
Actions.groovy script, 392
<actionSubmit> tag, 120, 124
<actionSubmitImage> tag, 120
ActiveRecord, 165
add() method, 28
afterInterceptor, 157

Ajax (Asynchronous JavaScript and XML
in Grails), 67, 277–291
autocomplete feature, 287–291
components, 278
dynamic data rendering in, 279–283
editing field in place, 283–287
introduction to, 277
tags,119
using in Grails, 277–279

Amazon.com, 295
Ant fileScanner, 133
AntBuilder, 53
AOP. See aspect-oriented programming
Apache 2.0 license, 64
Apache Ant, 363
Apache Commons Lang, 302
Apache Commons Logging component,

161, 358
Apache log4j, 358
Apache Lucene, 262
applets, 1
application layer, 69
Application Programming Interfaces (APIs),

1, 58
application-level security, 215–216
application.properties file, 361, 366
applications

controlling, 148–156
Grails. See Grails applications
internationalizing, 141
running Groovy, 5, 79–80
web. See web applications

<applyLayout> tag, 121
architecture, Grails, 68–70
arrays, 31
as Set clause, 31
aspect-oriented programming (AOP), 157
assert methods, 47–48, 127
assert syntax, 18
assertions, 17–18
assertToString() method, 84

Index

399

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 399

assignment tags, 119
audit logs, 148, 157–159
AuthController class, 239
authentication, 216–219, 223
authentication logic, 122
authority classes, 249–251
autocomplete feature, of Ajax, 287–291
automatic events, 183–184
AWT (Abstract Window Toolkit), 315

■B
backslashes, strings and, 22
BasicContentPane, 383
BasicMenuBar, 383
BasicStatusBar, 383
BasicToolBar, 383
batch processing

building batch-reporting facility, 340–350
controlling execution frequency, 342–345
dependency injection and, 346–347
introduction to, 337
job creation, 338–340

batch-reporting facility, 340–350
beans, transactional, 211
beforeInterceptor closure, 157–158, 302
behaviors, adding using closures, 58
belongsTo keyword, 99–102, 171–176
binary large objects (BLOBs), 172
blank constraint, 187
body style, 115
Bootstrap.groovy file, 220–221, 355
bootstrapping, 220–221, 355
boundary matchers, 35
buddies template, 115
buddy lists, 174
build closure, 392
Builder design pattern, 52
builders, 52–54, 380
built-in constraints, 187
byte[], 268

■C
cache, configuring, 181–182
Canoo WebTest, 131–139
CAPTCHA plug-in, 223224, 227, 229
CAS (Central Authentication Server)

plug-in, 243–246
configuation, 244–246
installation, 244
usage, 246

cas.disabled flag, 246
Cascading Style Sheets (CSS), 107–109,

111–118
categories, controlling, 153–156
Category controller, 153
Category List view, 153
cd command, 76
character classes, 34
character large objects (CLOBs), 172
characters, 34
<checkBox> tag, 120
class inheritance, 180–181
classes, extending

with Expandos, 57–58
with MOP, 58–60

closures, 24–26, 58. See also specific types
binding values to, 25–26
Groovy, 8
methods vs., 24
passing as parameters, 26
passing parameters to, 24–25
using, 24

code
simplification, 6–7
testing, 126–139

Codehaus, 2, 64
Collab-Todo application (example)

adding rich-text capabilities to, 258–261
advanced presentation components for,

257–274
file uploads, 264–269
mail services, 269–274
search capabilities, 261–264

domain, 166–168
domain classes, 74
introduction to, 70–71
main module creation, 386–387
reporting facility for, 311–323
structure of, 382
wireframe, 106
scaffolding-based version, 71–102

application creation, 75–79
controller creation, 89–96
domain class creation, 81–82
domain class implementation, 87–89
domain relationships creation, 98–102
implementing integration testing, 82–84
running application, 79–80
running test harness, 84–87

■INDEX400

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 400

collect() method, 41–42
<collect> tag, 119
collection notation, 8
collections, 27–33

arrays, 31
lists, 27–28
maps, 32–33
ranges, 28–29
sets, 30–31

columns
disabling lazy fetching, 179
names, 171, 178

command line, 15, 363
command-line scripts, 369378

creating to-do items, 372–375
deleting to-do items, 375–376
for invoking and displaying web services,

369–372
overview, 369
reading to-do items, 369–372
security issues, 372
setup for creating, 368–369
summary, 378
updating to-do items, 376–378

command-line tool, in Grails, 69
composite ID, 179
composite keys, 179
conditions, validating, 17
configuration files, 65

Config.groovy, 79, 162, 358–359
DataSource.groovy, 79, 356–357
Grails, 79

configurations, 354–360
data source, 355–357
logging, 358–360
startup/shutdown behavior, 354–355

ConsoleReader, 375
constraints, 88–89, 186–189

built-in, 187
custom, 188–189
functionality of, 186
nullable, 186
for validation, 92

content pane, 392, 395–396
content style, 115
contents closure, 61
contexts, for services, 211–212
continuous integration (CI) tools, 131
$controller, 299

controller attribute, of report tag, 325
controller classes, adding, 96–98
controller/action-centric approach, to

controlling user behavior, 148
controllers, 208, 382

adding registration action to, 227, 229
creating, 89–96
creating, in rich web client, 387–391
functions of, 64, 89
high-level view of, 387–389
run closure, 389
securing, 231–233, 240–241
for users, 148–153

convention over configuration, 77
convention-over-configuration URLs, 297
conventions, 65
conversation contexts, 211–212
copy/paste compatibility, 5
copyright notice, adding, 107–108
count() method, 84
counts, 197
create action, RestController, 307–309
Create User view, 143
Create view, 152
create-app target, 75–78
create-controller target, 90
create-domain-class target, 81–82, 96
create-job command, 338–339
<createlink> tag, 119
<createLinkTo> tag, 119
createTemplate() method, 56
CreateTodo.groovy, 372
creditCard constraint, 187
Criteria queries, 202–205
cron expressions, 343–345
cronExpression property, 342–343
CRUD (create, read, update, and delete)

functionality, 65
GORM support for, 194–196
REST web services and, 297–298

CSS (Cascading Style Sheets), 107–109,
111–118

curly braces {}, 24
<currencySelect> tag, 120
custom constraints, 188–189
custom environments, 354
custom tag library

creating, 274–276
referencing, 276–277

■INDEX 401

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 401

■D
DAO classes, 183
DAO domain model, 194
data binding, 152–153
data source

configurations, 355–357
configuring cache for, 181–182
defining, for reports, 317

data types, 171
database indexes, creating, 180
database migration, 206–208

dbmigrate plugin-in, 206
LiquiBase plug-in, 207

database model, 184–185
database persistence, GORM and, 165–166
databases

cache, 181–182
disabling versioning, 179
file storage, 172
HSQLDB, 68, 70
prepopulating, 220
querying, 194–206
setting default values, 171
translating domain objects to, 176
validation, 186–194

DataSource.groovy file, 79, 356–57
dateCreated property, 184
<datePicker> tag, 120
dbmigrate plug-in, 206
debugging, enabling trace-level, 162
<def> tag, 119
default values, setting, in GORM, 171
delete action, RestController, 305–306
Delete HTTP utility, 390, 397
delete() method, 84, 127
deleteAction, 390
deleteTodo closure, 390
DeleteTodo.groovy, 375
dependency injection, 64, 346–347
deployment, 353–362

configuration, 354–355, 357–360
environments, 353–354
packaging, 360–362
scripts, 364–365

destroy action, 355
development environment, 353
DigestUtils, 218
directories

important Grail, 78
not version-controlled, 89

directory structure, generated by
create-app target, 77–78

<div> tag, 109
Document Object Model (DOM), 50
DocumentBuilderFactory, 52
Dojo, 277–278
domain, class-level diagram, 167
domain classes (models), 64

Acegi, 248–250
adding, 96–98
behaviors implemented as methods in,

89
creating, 81–82
creating relationships between, 98–102
implementing, 87–89
persistence of, 69
using to map database, 168

domain data
Acegi, 250–251
JSecurity, 237–238

domain objects
adjusting mappings, 177–181
advanced settings, 177–184
creating, 168–185
JSecurity, 234–236
methods called upon loading, 184
transient properties, 182–183
translating to database, 176
validation, 186–194

domain-level security, 215
domain-specific languages (DSLs), 60–61
domains

class inheritance, 180–181
Collab-Todo, 166–168
introduction to, 165
relationships, 168, 172–175
Todo (example), 169–172

DOMBuilder, 53
DOMCategory, 371
Don’t Repeat Yourself (DRY) principle, 65
dot dereference operator, 150
double-quoted strings, 21
drop-down boxes, autocomplete feature

for, 287–291
duck typing, 7, 57
dynamic data rendering, 279–283
dynamic finders, 314
dynamic methods, 127, 153
dynamic queries, 196–200
dynamic scaffolding, 142

■INDEX402

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 402

■E
e-mail constraint, 187
e-mail messages, 273–274
e-mail service, creating, 269, 271
each() method, 29, 31
<each> tag, 117–118
eager fetching, 179
echo character, 375
edit action, 149

Elvis operator, 42
<else> tag, 111, 118
EMailAuthenicatedSender, 271
EMailAuthenticatedService, 269,

349–350
embedded expressions, evaluating, with

GStrings, 19–20
embedded SQL, for reporting, 335
empty maps, 33
empty sets, 31
<encodeAs> tag, 121
encodeAsJSON() method, 303
encodeAsXML() method, 303
encodeAsXXX() methods, 303
Enterprise Java Beans (EJB) 3.0, 66
environment mappings, 354
Error domain class, 303
error messages, 139–142, 190–194
errors, 141–144

assertion, 17–18
validation, 94, 190–194

events, GORM, 183–184
execute() method, 339
executeQuery method, 201–202
Expando class, 57–58
expressions. See regular expressions
Extensible Markup Language. See XML

■F
Facebook, 295
FCK editor plug-in, 259
field operator (.@), 43–44
fields, editing in place, 283–287
<fieldValue> tag, 122
file downloads, 268–269
file uploads, 264–269
fileAsString() method, 60
files

storage of, 172
version control for, 89

fileScanner, 133

filters, 231–233
security, 239
using, 159–161

find operator (=), 36–37
find query, 201–202
findAll query, 202
<findAll> tag, 119
findAllBy query, 199
findAllWhere query, 199
findBy query, 127, 197–198
findByName() method, 86–87
findWhere query, 197–198
flash context, 212
flash messages, 124, 141–148, 155
flash scope, 144–148
flow context, 212
flows, 211
footer, creating, 107–110
footer template, 110
for loops, 29
foreign keys, 171
form attribute, 124
form tags, 120, 266–268
format attribute, of report tag, 325–326
format() method, 302
<formatDate> tag, 121
<formatNumber> tag, 121
formRemote component, 278
<formRemote> tag, 1
forms

autocomplete feature for, 287–291
editing field in place, 283–287

functional testing, using Canoo WebTest,
131–139

functions, script, 12–13

■G
Gang of Four, 52
Gant, 69, 363–365
generated ID, 179
Get utility, 389
get() method, 28, 305
get(String primaryKey) method, 194
getAll query, 199
GetAllTodos.groovy, 369, 371
getArtefact() method, 302
getName() method, 260
getResourceAsStream() method, 60
getResourceAsText() method, 59–60
GetRestClient.groovy script, 369

■INDEX 403

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 403

getters, 6
getText() method, 60
Glazed Lists, 368
Google Maps, 295
Google Web Toolkit (GWT), 277
GORM. See Grails Object Relational

Mapping
GPathResult, 54
Grails

advantages of, 64
Ajax in, 277–291
architecture, 68–70
configurations, 354–360

data source, 355–357
logging, 358–360

conventions, 297
default runtime, 69
features, 64–65
installation, 70
introduction to, 63–68
open source integration, 66–68
REStful web services in, 298–309
security plug-ins, 221–233
view layer, 64

Grails applications
creating, 75–79
deploying, 353–362

configuration, 354–360
packaging for, 360–362
using environments, 353–354

startup/shutdown behavior, 354–355
upgrading, 365–366

grails command line, 363
grails create-controller command, 127
grails create-unit-test command, 127
grails create-webtest command, 136
grails generate-views User command, 142
grails install-plugin webtest, 132
Grails Object Relational Mapping (GORM),

65, 165–166
class inheritance, 180–181
CRUD support, 194–196
disabling versioning, 179
domain creation in, 168–185
events, 183–184
outside of Grails, 207–208
query creation in, 196–206
relationship creation in, 172–175
references for, 212
relationship management, 175–176

relationships in, 168
setting default values, 171
transient properties, 182–183

grails run-webtest command, 135
Grails tag library, 118–121

Ajax tags, 119
assignment tags, 119
form tags, 120
iteration tags, 118
linking tags, 119
logical tags, 118
render and layout tags, 121
UI tags, 120
validation tags, 121

grails test-app command, 130
grails-app/conf directory, 78, 220–221
grails-app/conf/hibernate directory, 78
grails-app/conf/spring directory, 78
grails-app/config directory, 79
grails-app/config/BootStrap.groovy file, 354
grails-app/controllers directory, 78
grails-app/domain directory, 78
grails-app/i18n directory, 78
grails-app/services directory, 78, 208
grails-app/taglib directory, 78
grails-app/views directory, 78, 106
grails-app/views/layout directory, 78
grails-app/views/layouts directory, 117
grails.env system property, 354
grailsApplication, 302
GrailsDispatchServlet, 80
GrailsUtil.environment(), 355
GraphicsBuilder, 381
greedy quantifiers, 35
<grep> tag, 119
Groovy, 66

assertions, 17–18
strings, 18–22
methods, 23–24
closures, 24–26
collections, 27–33
regular expressions, 33–39
operators, 40–45
XML and, 50–54
templates, 54–57
Meta Object Protocol, 58–60
closures, 8
collection notation, 8
integration with Java, 2
language features, 2

■INDEX404

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 404

running applications, 5, 79–80
unit testing in, 47–49
introduction to, 1–9
installation, 2–3
converting Java class to, 3–9
code simplification, 6–7
scripts, 11–17, 368–369

Groovy builders, 52–54
Groovy Console, 16–17, 381
Groovy Development Kit (GDK), 2
Groovy map, 151
Groovy Server Pages (GSP), 64, 107
Groovy Shell, 15–16
Groovy String (GString), 19–20, 155
groovy.lang.MetaClass, 59
groovy.lang.MissingMethodException, 7
groovy.lang.MissingPropertyException, 7
groovy.util.GroovyTestCase, 47
GroovyBeans, converting JavaBeans to, 5–6
groovyc, 13–15
GroovyMarkup, 52
GroovyTestCase class, 48–49, 127
group property, setting, 342
GString, 19–20, 155
GStringTemplateEngine, 55

■H
handleLogin action, 122–130
<hasErrors> tag, 122, 143
hashed passwords, 229
hashing techniques, 217–218
HashSets, 30
hasMany keyword, 99–102, 173–174, 176
header style, 115
Hibernate, 67, 166

caching in, 181–182
Criteria queries, 202–205
session, binding to jobs, 342
SQL queries and, 194

Hibernate Query Language (HQL), 194
<hiddenField> tag, 120
HQL queries, 196, 201–205
HSQLDB database, 68–70, 84, 353
HTML code, allowing users to insert, 258
HTTP methods, 297
HTTP over Secure Socket Layer (HTTPS),

362, 372
HTTP utilities

Delete utility, 390, 397
Get utility, 396–397, 389

Put utility, 391, 397
Get, 396–397

hypertext links, 111

■I
iBATIS, 166
id attribute, 109
ID field, 156
id property, 88
<if> tag, 111, 118
<ifelse> tag, 118
if-then-else logic, 111
iGoogle, 291
implicit imports, 6–7
import.sql file, 220
index action, 90
index page, 116–117
indexes, creating, 180
init method, 220, 355
initialization, of services, 210–211
inList constraint, 187
integration testing (IT), 65, 81, 354

implementing, 82–84
using JUnit, 127–131
vs. unit testing, 127

interceptor conditions, 158
interceptors, action, 157–159
interpolation, string, 20–21
invoke() method, 302
InvokeHelper class, 302
InvokerHelper class, 308
iReports

creating reports, 316–323
installing, 315–316
making aware of domain classes,

318
overview, 315

iteration
over lists, 41–42
using ranges, 29

iteration tags, 117–118

■J
-j switch, 14
JasperReports

creating reports, 316323
defining data source, 317
installing, 315–316
overview, 314–315
report generation, 328–332

■INDEX 405

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 405

Java
APIs, 1, 58
applets, 1
MOP and, 58
password hashing in, 218
popularity of, 1
running Groovy programs with, 13
writing XML with, 50, 52

Java classes
converting to Groovy, 3–9
main() method, 4, 8–9

Java Community Process (JCP), 2
Java Database Connectivity (JDBC), 79
Java Naming and Directory Interface

(JNDI), 79
Java Persistence API (JPA), 67, 173
Java scripts, 12
Java Specification Request (JSR), 2
Java Virtual Machine (JVM), 1–2, 68
java.lang.Comparable, 28
JavaBeans, converting to GroovyBeans, 5–6
javascript component, 278
JavaScript Object Notation (JSON), 295
<javascript> tag, 120, 278
JavaServer Pages Standard Tag Library

(JSTL), 118
javax.mail.Authenticator, 272
JAVA_OPT environmental variable, 315
JBoss Seam, 216
JCaptcha plug-in, 224
JCP (Java Community Process), 2
JDBC (Java Database Connectivity), 79
JetBrains, 13
Jetty, 67, 353
JGoodies FormLayout component, 368, 395
JGoodies Forms, 381
JIDE Common Layer, 381
JideBuilder, 380–381
JLine, 375
JNDI (Java Naming and Directory

Interface), 79
jobs

controlling execution frequency of,
342–345

creating, 338–340
multiple, executing concurrently, 343

joint compiler, 13–14
JPA (Java Persistence API), 67, 173
JSecAuthBase class, 240
JsecPermission object, 235, 238

JsecRole object, 235
JsecRolePermissionRel object, 235
JSecurity, 233–243

domain classes, 234
domain data, 237–238
installation, 234
usage, 239–243

JsecUser object, 235
JsecUserPermissionRel object, 236
JsecUserRoleRel class, 236, 238
JSON (JavaScript Object Notation), 295
JSR (Java Specification Request), 2
JUnit, 47–49, 68, 127–131
junit.framework.TestCase, 47, 127
JVM (Java Virtual Machine), 1–2, 68

■L
large object types (LOBs), 172
lastUpdated property, 184
layout

footers, 107–110
main, 107–109, 124
styling, 112–118
tags, 121
topbar, 110–112

layout metatag, 117
<layoutBody> tag, 121
<layoutHead> tag, 121
<layoutTitle> tag, 121
<layoutTitle> tag, 115
lazy fetching, 179
lib directory, 78
Lightweight Directory Access Protocol

(LDAP) server, 218
LinkedHashMap maps, 32–33
<link> tag, 111, 119
linking tags, 119
LiquiBase plug-in, 207
list action, 153, 297
list query, 200
List view, 156
list() method, 83
listOrderBy query, 200
lists, 27–28, 31
loadData closure, 389, 391
<localeSelect> tag, 120
log property, 161
log-in/log-out process, 229–231
log4j, 359
logging, 161–163

■INDEX406

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 406

logging configurations, 358–360
logical operators, 35
logical tags, 118
login action, 124–125
login functionality, 122
login view, 122, 124
login/logout functionality, 111, 125–126
logout action, 125–130

logs, audit, 148, 157–159

■M
mail services, adding to web applications,

269–274
MailSender, creating, 271–272
main layout, 107–109, 124
main layout (main.gsp), 107, 109
Main module, 382, 386–387
main() method, 4, 8–9, 12
main.gsp, 107
many-to-many relationships, 173, 176
many-to-one relationships, 175
map notation, 8
map syntax, 53
mappings

adjusting, 177–181
transient, 183

maps, 32–33
markup, wiki, 260–261
MarkupBuilder, 53–54, 384
mashups, 295
match operator (==), 36, 38
matcher, 36–37
matches constraint, 187
max constraint, 187
maxSize constraint, 187
message bundles, 139–141
Message Digest algorithm 5 (MD5), 217
<message> tag, 122, 139–141, 146
messages, validation, 190–194
messages.properties file, 139–142
Meta Object Proto: (MOP), 58–60
<meta> tag, 121
metaClass property, 59–60
method closure operator (.&), 44–45
methods, 23

automatic, 183–184
closures vs., 24
defining, 23
interception of, 195

min constraint, 187

mock objects, 57
MockFor method, 127
models. See domains
multiline strings, 21–22
MultipartHttpServletRequest, 267
multiple results queries, 198–200
MVC framework, Grails as, 64
MySQL production configuration, 356

■N
name attribute, 124, 342
named parameters, 42
names

column, 171, 178
table, 171, 177–178

native properties, in Groovy, 6
native queries, 205–206
newDocument() factory method, 52
newTransformer() factory method, 52
next() method, 28
NodeBuilder, 53
Not Invented Here (NIH) syndrome, 66
notEqual constraint, 187
nullable constraint, 186–187

■O
object-relational mapping (ORM), 65
one-to-many relationships, 174–175
one-to-one relationships, 173–174
open source features, 66–68
OpenSymphony Compass Search Engine

framework, 262
OpenSymphony suite, 67
operator overloading, 40–41
operators, 40–45

Elvis, 42
field, 43–44
method closure, 44–45
overloaded, 40–41
regular expression, 36–38
safe navigation.dereference, 42–43
specialized, 41–45
spread, 41–42
ternary, 42

optimistic locking, 170
optionKey attribute, 124
optionValue attribute, 124
org.springframework.mail.MailSender

class, 269
overloaded operators, 40–41

■INDEX 407

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 407

■P
page style, 115
<pageProperty> tag, 121
<paginate> tag, 121
parameters

named, 42
passing to closures, 24–25
request, 150–151

params, 150, 153
params.id, 149
partial page updates, 279–283
passwords

hashing, 217–218, 229
security, 229
validating, 229

PATHEXT option, 15
pattern operator (string), 37–38
patterns, 37–38
performance testing (PT), 354
permissions, 219, 241

assignment of, 238
definitions, 237
role-based, 219

persistence mechanisms, 165–166
Person class, 248
Plain Old Groovy Object (POGO), 5
Plain Old Java Objects (POJOs),

5, 66
plug-ins, 66. See also specific plug-ins
Poka Yoke, 126
possessive quantifiers, 35
POST, 306–307
Post HTTP utility, 397
predefined character classes, 34
presentation components

advanced, 257–274
file uploads, 264–269
mail services, 269, 271–274
rich-text capabilities, 258–261
search capabilities, 261–264

for rich client, 380–381
previous() method, 28
primary key ID, 170
primary keys

changing, 178–179
default setting, 171

println() method, 6–7, 12, 161
production environment, 353

properties
native, 6
not null, 186
transient, 182–183

Prototype, 277
prototype context, 212
public modifier, 23
Put HTTP utility, 391, 397
PUT request, 308–309

■Q
Quartz

building batch-reporting facility with,
340–350

installing plug-in, 337–338
introduction to, 337
job creation, 338–340

queries
counts, 197
creating, 196–206
Criteria, 202–205
database, 194–206
dynamic, 196–200
filtering, 200
HQL, 201–205
multiple results, 198–200
native, 205–206
single result-set, 197–198

query by example, 202

■R
Radeox plug-in, 260–264
<radio> tag, 120
<radioGroup> tag, 120
Rails filter, 157
range constraint, 187
ranges, 28–29, 48–49
realms, 242–243
records, versions of, 179
redirects, 144–145
registration action, adding to controller,

227, 229
registration page

implementing, 225–227
updating, to send e-mail message,

273–274
regular expressions (regex), 33, 36–39

constructs, 34–36
operators, 36–38
uses of, 38–39

■INDEX408

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 408

relationships
creating, 172–175
defining, 168
domain, 98–102
managing, 175–176
many-to-many, 173, 176
many-to-one, 175
one-to-many, 174–175
one-to-one, 173–174
types, 172

reluctant quantifiers, 35
remoteField component, 278
<remoteField> tag, 120
remoteFunction component,

278
<remoteFunction> tag, 120
remoteLink component, 278
<remoteLink> tag, 120
remove() method, 28
render and layout tags, 121
render() method, 152
<render> tag, 121
<renderErrors> tag, 121, 143
<render> tag, 107
report attribute, 325
report data, gathering, 327, 333
report definition, 315
report exporter, 315
<report> tag, 313, 323–326

adding to application, 333–334
creating, 324–325

report template, 315
ReportController, 324–329, 332
reports/reporting, 311–312

compiling, 323
creating, 316326
defining data source, 317
dynamic finders approach, 314
enhancing, 321–323
generating, 328–332
iReports, 315–316
JasperReports, 314–316
locating and loading, 327–328
overview, 312–314
testing, 130, 135
tools, 314–316
using embedded SQL approach,

335
Reports List view, 334–335

ReportService, 326–332
calling the, 328–329
creating, 329
invocation of, 347–349

Representational State Transfer (REST)ful
web services, 295–298

command-line scripts with, 369–378
CRUD functionality, 297–298
in Grails, 298–309
JSON object representations, 297
principles of, 296
URLs, 296–297
XML object representation, 296–298

request context, 212
request parameters, 150–151
Requestmap class, 249–251
resources.xml, 264–272
$rest, 301
REST plug-in, 299
RestController, 300–309, 383

common functionality, 301–302
create action, 307–309
delete action, 305–306
show action, 303–304
update action, 306–307

return statement, 23, 150–151
reusable code, 23–26
rich Groovy client, 379–397

application structure, 381–383
builder overview, 383–386
considerations for creating, 380–383
controller module creation, 387–391
deleting data, 390
Main module creation, 386–387
overview, 379
presentation components and

frameworks, 380–381
presentation technology for, 380
retrieving data, 389
saving data, 390–391
view creation, 392–396

rich text editors, 259
<richTextEditor> tag, 121
rich-text capabilities, 258, 260–261
role-based access control, 219, 241
roles, 237–238
RSS feeds, 291–293
RSS readers, 291–293
RSS Web Clip, 291

■INDEX 409

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 409

rules, for access control, 219
run closure, 389
run-pp target, 79–80, 353, 366
runtime environment, 69, 353

■S
safe dereference operator, 157
safe navigation/dereference operator (?.),

42–43
save action, 142, 146, 151, 154, 282
save() method, 127, 186
saveAction, 390
saveTodo closure, 391
scaffolding, 65, 71–102

application creation, 75–79
controller creation, 89–96
domain class creation, 81–82
domain class implementation, 87–89
domain relationship creation, 98–102
implementing integration tests, 82–84
running application, 79–80
running test harness, 84–87

scale constraint, 187
script.aculo.us, 277, 279
scripts

command-line, 369, 371–372, 375–376,
378

compiling, 13–14
deployment, 364–365
functions, 12–13
Gant, 364–365
Groovy, 11–17
Java, 12
running, 14–17
simple example, 11–12

scripts directory, 78
search capabilities, adding to web

applications, 261–264
Searchable plug-in, 261–264
second-level cache, 181–182
Secure Copy Protocol (SCP) task, 365
security

access authentication, 216
access control, 218–221
administrative areas, 216
application-level, 215–216
authentication, 216–218, 223
CAS, 243–246
with command-line scripts, 372

custom implementation, 222–233
log-in/log-out, 229–231
securing controllers, 231–233
user registration, 224–229

defining, 216–221
domain-level, 215
filters, 231–233, 239
goals of, 215
Grails, 221–222
JSecurity, 233–243
password, 229
permission-based, 241
realms, 242–243
Spring (Acegi), 246–255

<select> tag, 120, 124
services, 208–212

calling, 209
creating, 208–209
injecting into, 210
initializing, 210–211
introduction to, 208
service context in, 211–212
transaction boundaries in, 211

servletContext, 220
session context, 212
session validation, 219
sessionRequired property, 342
set() method, 28
<set> tag, 119
sets, 30–31
setters, 6
setUp() method, 48, 83, 127
show action, 144, 151, 303–304
Show User view, 144
Show view, 148
shutdown behavior, 354–355
sidebar style, 116
signOutFilter, 240
SimpleTemplateEngine, 55–57, 350
single result-set queries, 197–198
single-quoted strings, 21
singleton context, 212
SiteMesh, 67
Six Sigma, 126
size constraint, 187
slashy strings, 22
snake_case, 171
SnipSnap, 260
<sortableColumn> tag, 121

■INDEX410

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 410

special loggers, 359
spread operator (*.), 41–42
Spring Framework, 66, 210, 264–268
Spring Mail, 269
Spring Security, 246–255
SQL (Structured Query Language),

335
SQL queries, 194–198, 202
SQL statements, 297
src/groovy directory, 78
src/java directory, 78
staging directory, 89
Standard Widget Toolkit (SWT), 380
startDelay property, 342, 345
startup behavior, 354–355
static mappings, 177
static scaffolding, 142
strings, 18–22

defining, 18
double-quoted, 21
externalizing, 139–141
GString, 19–20
interpolation, 20–21
multiline, 21–22
single-quoted, 21
slashy, 22

StringUtils capitalize() method, 302
Struts tags, 118
StubFor method, 127
submitToRemote component, 278
<submitToRemote> tag, 120
subscript operator, 150
suite method, 133
Swing

creating rich Groovy client with,
379–397

builder overview, 383–386
considerations for, 380–383
controller module creation,

387–391
main module creation, 386–387
overview, 379
view creation, 392–396

SwingBuilder, 16, 53, 380
SwingLabs, 381
SwingX components, 368
SwingXBuilder, 368, 380–386
SwingXBuilder Groovy Console, 381
SwtBuilder, 380

■T
table names, 171
tables

naming, 177–178
primary keys, 178–179

tag libraries
creating custom, 274–276
Grails, 118–121
overview, 323–324
referencing, 276–277

tarDown method, 127
targets, 363
task automation, with Gant, 363–365
tearDown method, 48
template attribute, 107
template engines, 54–56
templates, 106

buddie, 115
creating, 280–282
footer, 107, 110
generating text with, 54–57
rendering, 280
topbar, 110
WebTest, 136

ternary operator, 42
test environment, 353
test-app target, 85–87
test/integration directory, 78
test/reports directory, 89, 130
test/unit directory, 78, 85
TestCase class, 48
testing, 126–139

functional, 131–139
integration, 65, 81–84, 127–131
purpose of, 126
reports, 130, 135
running test harness, 84–87
unit, 47–49, 57, 65, 68, 127

testPersist() method, 84–87
testsuite.groovy, 133
testToString() method, 84, 87
text, templates for generating, 54–57
text editors, 259
<textArea> tag, 120
<textField> tag, 120
ThreadLocalSecurityContext, 240
timeout property, 342
timeout proprety, 345
<timeZoneSelect> tag, 120

■INDEX 411

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 411

TINYBLOB, 172
Todo domain (example), 169–172
Todo domain object, 156
TodoController, 157
topbar

creating, 110–112
making functional, 122–126
WebTest for, 136–139

toString() method, 83–84, 87, 89, 97
trace-level debugging, enabling, 162
TransformerFactory, 52
transient properties, 182–183
translation, domain-to-database, 176

■U
UI tags, 120
underscore, 106
Unified Modeling Language (UML), 73
unit testing, 47–49, 65

vs. integration testing, 127
JUnit, 68
mock objects for, 57

update action, 154, 306–307
UpdateTodo.groovy, 376
upgrades, 365–366
url constraint, 187
URL mapping, 299–301
UrlMappings.groovy file, 79
URLs

CAS definitions, 245
convention-over-configuration, 297
REST, 296–297

user acceptance testing (UAT), 354
user authentication, 216–219, 223
user definitions, 237, 250
User domain object, 142, 151
user information web service, 375
user interface (UI)

creating, for rich client, 392, 395–396
creating with SwingXBuilder,

384–386
footers, 107–110
styling, 112–118
template for, 106
top bar, 110–112
topbar functionality, 122–126

user registration, custom security
implementation for, 224–229

User.list() method, 124

UserController class
adding registration action to, 227–229
creating, 127
handleLogin action, 124–130
handleLogin action, 125–126
login action, 124
login action, 125
logout action, 125–126
logout action, 127–130
save action, 142, 146, 151–153
show action, 144, 151
using filters with, 159–161

UserControllerTest, 130
UserControllerTests.groovy, 127
userModificationCheck filter, 160–161
userModificationFilter, 160
userName property, 127–130, 151, 229
users

access control for, 219
adding, 124
controlling, 148–153
defaulting, 154
saving in session, 239–240

■V
validateAttributes method, 326
validation, 141–144, 186–194

calling the validator, 190
constraints for, 92, 186–189
custom, 188–189
errors, 94
messages, 190–194
tags, 121

validator keyword, 188
verifyListPage method, 136
version control, 89
version field, 170
versioning, disabling, 179
view directory, placing templates in, 106
views, creating 142, 392–396
Views module, 383
Views.groovy script, 392
void delete(Domain d) method, 194
VootStrap.groovy file, 79

■W
WAR file, 361
war target, 360
WC3 (World Wide Web Consortium), 50

■INDEX412

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 412

wdiget closure, 396
Web 2.0

advanced presentation components,
257–274

file uploads, 264–269
mail services, 2691–274
rich-text capabilities, 258–261
search capabilities, 261–264

Ajax, 277–291
functionality, 67
RSS feeds, 291–293

web applications
advanced presentation components for,

257274
file uploads, 264––269
mail services, 269–274
rich-text capabilities, 258–261
search capabilities, 261–264

development of, 63
RSS feeds for, 291–293

web services
HTTP utilities for interacting with,

396–397
interaction of Controller with, 387–391
introduction to, 295
RESTful, 295–309

web-app directory, 78
web-app/css directory, 78
web-app/images directory, 78
web-app/js directory, 78

web-app/WEB-INF directory, 78
web-app/WEB-INF/classes directory, 89
web-app/WEB-INF/grails-app directory, 89
web-app/WEB-INF/lib directory, 89
web-app/WEB-INF/spring directory, 89
WEB-INF directories, 80
webtest directory, 132
webtest.properties, 132
webtest/tests directory, 133
<while> tag, 118
widget closure, 396
wiki markup, 260–261
winpath variable, 37
wireframe, components, 106
World Wide Web Consortium (WC3), 50

■X
XML (eXtensible Markup Language)

Groovy builders for, 52–53
reading, 54, 371, 389
working with, 50–54
writing with Java, 5052
writing with MarkupBuilder, 53–54

XML report definition, 315
XmlParser, 371
XmlSlurper, 54, 371, 389
XmlTemplateEngine, 55

■Y
Yahoo! User Interface (YUI) Library, 277

■INDEX 413

10450_ch14_IDX.qxd 5/29/08 4:29 PM Page 413

	Beginning Groovy and Grails: From Novice to Professional
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Authors

	Introduction to Groovy
	Groovy Language Features
	Groovy Installation
	Groovy by Example
	Converting Java to Groovy
	Converting a JavaBean to a GroovyBean
	Simplifying the Code
	Using Groovy Collection Notation and Closure
	Getting Rid of Main()

	Summary

	Groovy Basics
	Scripts
	Using Script Functions
	Compiling Groovy
	Running Groovy
	Command Line
	Groovy Shell
	Groovy Console

	Assertions
	Strings
	String Interpolation
	Multiline Strings
	Slashy Strings

	Methods and Closures
	Methods
	Closures

	Collections
	Lists
	Ranges
	Sets
	Arrays
	Maps

	Regular Expressions
	Groovy Regular Expression Operators
	Match Operator
	Find Operator
	Pattern Operator

	Common Uses of Regular Expressions

	Operators
	Operator Overloading
	Specialized Operators
	Spread Operator
	Elvis Operator
	Safe Navigation/Dereference Operator
	Field Operator
	Method Closure Operator

	Summary

	More Advanced Groovy
	Groovy Unit Testing
	Working with XML
	Writing XML with Java
	Groovy Builders
	Writing XML with Groovy
	Reading XML with

	Generating Text with Templates
	Expandos
	Meta Object Protocol
	Domain-Specific Languages
	Summary

	Introduction to Grails
	What Is Grails?
	Grails Features
	Convention Over Configuration
	Unit Testing
	Scaffolding
	Object Relational Mapping
	Plug-Ins

	Integrated Open Source
	Groovy
	Spring Framework
	Hibernate
	SiteMesh
	Ajax Frameworks
	Jetty
	HSQLDB
	JUnit

	Grails Architecture
	Installing Grails
	Collab-Todo Application
	Getting Started with Scaffolding
	Understanding the Scaffolding Process
	Creating the Application
	Running the Application
	Creating a Domain Class
	Implementing Integration Tests
	Running the Test Harness
	Implementing a Domain Class
	Creating the Controller
	Finishing the Remaining Domain and Controllers
	Creating Domain Relationships

	Summary

	Building the User Interface
	Starting with the End in Mind
	Creating the Footer
	Creating the Topbar
	Adding More Look and Feel
	Grails Tags
	Logical Tags
	Iteration Tags
	Assignment Tags
	Linking Tags
	Ajax Tags
	Form Tags
	UI Tags
	Render and Layout Tags
	Validation Tags

	Making the Topbar Functional
	The Login View
	The login Action
	Handling the Login and Logout Actions

	Testing
	Integration Testing Using JUnit
	Functional Testing Using Canoo WebTest

	Externalizing Strings
	Errors and Validation
	Flash and Flash Messages
	Controlling the Application
	Controlling Users
	Controlling Categories

	Creating an Audit Log Using Action Interceptors
	Using Filters
	Summary

	Building Domains and Services
	GORM
	Collab-Todo’s Domain
	Creating Domain Objects
	Basic Domain Creation
	New Columns
	Naming
	Foreign Keys
	Data Type
	Setting Default Values
	Large Object Types

	Creating Relationships
	Players Involved
	Managing Relationships

	Overwriting Default Settings
	Adjusting the Mappings
	Turning on the Cache
	Transient Properties
	GORM Events
	Database Model

	Validation
	Constraints
	Using Built-In Constraints
	Creating Custom Constraints

	Calling the Validator
	Validation Messages

	Querying the Database
	GORM’s CRUD Support
	Creating Queries
	GORM’s Dynamic Queries
	HQL Queries
	Hibernate’s Criteria Queries

	Database Migration
	The dbmigrate Plug-In
	The LiquiBase Plug-In

	Services
	Creating a Service
	Calling the Service
	Injecting into the Service
	Initializing the Service
	Setting a Bean to Be Transactional
	Service Context Available in the Service

	Summary

	Security in Grails
	What Is Security?
	Authentication
	Access Control

	An Overview of Grails Security Solutions
	Custom Security Implementation
	Registering a User
	Installing the Captcha Plug-in
	Implementing the Registration Page
	Adding the Registration Action to the Controller

	Logging In and Out
	Securing the Controllers

	JSecurity
	JSecurity Installation
	JSecurity Domain Classes
	JsecUser
	JsecRole
	JsecPermission
	JsecRolePermissionRel
	JsecUserRoleRel
	JsecUserPermissionRel

	JSecurity Domain Data
	Role Definition
	Permission Definition
	User Definition
	Role and Permission Assignment

	JSecurity Usage
	Saving the User in Session
	Locking Down the Controller
	Advanced Usage

	CAS
	CAS Installation
	CAS Configuration
	CAS Usage

	Spring Security (aka Acegi Security)
	Acegi Installation
	Acegi Domain Classes
	Person
	Authority
	Requestmap

	Acegi Domain Data
	User Definition
	Authority Definition
	Requestmap Definition

	Acegi Domain Customization
	Acegi Security Usage

	Summary

	Web 2.0—Ajax and Friends
	Advanced Presentation Components
	Adding Rich-Text Capabilities
	Adding Search Capabilities
	Allowing File Uploads
	Uploading the File
	Downloading the File

	Adding Mail Services
	Creating the E-Mail Service
	Creating the Mail Sender
	Updating the Registration Page

	Tag Libraries
	Creating the Tag Library
	Referencing the Tag Library

	Ajax in Grails
	Using Ajax Frameworks in Grails
	Dynamic Rendering of Data
	Rendering a Template
	Creating a Template
	Making the Page Dynamic

	Editing a Field in Place
	Using the Autocomplete Feature

	RSS Feeds
	Summary

	Web Services
	RESTful Web Services
	RESTful in Grails
	URL Mapping
	Default URL Mappings
	RESTful Mappings

	RestController
	Common Functionality
	RESTful show
	RESTful delete
	RESTful update
	RESTful create

	Summary

	Reporting
	The Report
	Overview of the Reporting Function
	Reporting Tools
	Overview
	Installing JasperReports and iReports

	Creating the To-Do Report
	Defining the Data Source
	Using iReports
	Enhancing the Report
	Compiling the Report

	The Report Tag
	Tag Library Overview
	Creating the Tag

	The ReportController and the ReportService
	Tying It All Together
	Gathering the Report Data
	Adding the Report Tag to the Application

	The Report List
	An Alternate Approach
	Summary

	Batch Processing
	Installing the Quartz Plug-in
	Creating a Job
	Building a Batch-Reporting Facility
	Creating a Nightly Reporting Job
	Setting the Name and Group
	Controlling Execution Frequency

	Retrieving the User’s To-Dos
	Invoking the Report Service
	Invoking the E-Mail Service

	Summary

	Deploying and Upgrading
	Deploying Grails Applications
	Using Environments
	Understanding Grails Configurations
	Startup and Shutdown Behavior
	Data Source Configurations
	Logging Configurations

	Packaging the Application for Deployment
	Deploying to an Application Server

	Automating Tasks with Gant
	Upgrading Grails Applications
	Summary

	Alternative Clients
	Overview
	Setup
	Command-Line Scripts
	Command-Line Overview
	Reading To-Do Items
	Creating To-Do Items
	Deleting To-Do Items
	Updating To-Do Items
	Command-Line Script Summary

	Rich Groovy Client
	Overview
	Options, Alternatives, and Considerations
	Choosing the Appropriate Presentation Technology
	Choosing the Presentation Components and Frameworks
	Structuring the Application

	Builder Overview
	Creating the Main Module
	Creating the Controller Module
	Creating the View
	HTTP Utilities (Get, Put, Post, and Delete)

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

